

Section 18 Power-Down State

18.1 Overview

The H8/532 has a power-down state that greatly reduces power consumption by stopping the CPU
functions. The power-down state includes three modes:
1. Sleep mode— a software-triggered mode in which the CPU halts but the rest of

the chip remains active
2. Software standby mode— a software-triggered mode in which the entire chip is inactive
3. Hardware standby mode— a hardware-triggered mode in which the entire chip is inactive

The sleep mode and software standby mode are entered from the program execution state by
executing the SLEEP instruction under the conditions given in table 18-1. The hardware standby
mode is entered from any other state by a Low input at the STBY pin.

Table 18-1 lists the conditions for entering and leaving the power-down modes. It also indicates
the status of the CPU, on-chip supporting modules, etc., in each power-down mode.

Table 18-1 Power-Down State

Entering CPU Sup. I/O Exiting
Mode Procedure Clock CPU Reg’s. Mod’s. RAM Ports Methods
Sleep Execute Run Halt Held Run Held Held • Interrupt
mode SLEEP • RES Low

instruction • STBY Low
Soft- Set SSBY bit Halt Halt Held Halt Held Held • NMI
ware in SBYCR to and • RES Low
standby 1, then partly • STBY Low
mode execute SLEEP initialized

instruction*

Hard- Set STBY Halt Halt Not Halt Held High • STBY High,
ware pin to Low held and impe- then RES
standby level partly dance Low → High
mode initialized state
* The watchdog timer must also be stopped.

Notes: SBYCR Software standby control register
SSBY Software standby bit
307

18.2 Sleep Mode

18.2.1 Transition to Sleep Mode

Execution of the SLEEP instruction causes a transition from the program execution state to the
sleep mode. After executing the SLEEP instruction, the CPU halts, but the contents of its internal
registers remain unchanged. The functions of the on-chip supporting modules do not stop in the
sleep mode.

18.2.2 Exit from Sleep Mode

The chip wakes up from the sleep mode when it receives an internal or external interrupt request,
or a Low input at the RES or STBY pin.

1. Wake-Up by Interrupt: An interrupt releases the sleep mode and starts either the CPU’s
interrupt-handling sequence or the data transfer controller (DTC).

If the interrupt is served by the DTC, after the data transfer is completed the CPU executes the
instruction following the SLEEP instruction, unless the count in the data transfer count register
(DTCR) is 0.

If an interrupt on a level equal to or less than the mask level in the CPU’s status register (SR) is
requested, the interrupt is left pending and the sleep mode continues. Also, if an interrupt from
an on-chip supporting module is disabled by the corresponding enable/disable bit in the
module’s control register, the interrupt cannot be requested, so it cannot wake the chip up.

2. Wake-Up by RES pin: When the RES pin goes Low, the chip exits from the sleep mode to
the reset state.

3. Wake-Up by STBY pin: When the STBY pin goes Low, the chip exits from the sleep mode to
the hardware standby mode.

18.3 Software Standby Mode

18.3.1 Transition to Software Standby Mode

A program enters the software standby mode by setting the standby bit (SSBY) in the software
standby control register (SBYCR) to 1, then executing the SLEEP instruction. Table 18-2 lists the
attributes of the software standby control register.
308

Table 18-2 Software Standby Control Register

Name Abbreviation R/W Initial Value Address
Software standby control register SBYCR R/W H'7F H'FFFB

In the software standby mode, the CPU, clock, and the on-chip supporting module functions all
stop, reducing power consumption to an extremely low level. The on-chip supporting modules
and their registers are reset to their initial state, but as long as a minimum necessary voltage
supply is maintained (at least 2V), the contents of the CPU registers and on-chip RAM remain
unchanged. The I/O ports also remain in their current states.

18.3.2 Software Standby Control Register (SBYCR)

The software standby control register (SBYCR) is an 8-bit register that controls the action of the
SLEEP instruction.

Bit 7—Software Standby (SSBY): This bit enables or disables the transition to the software
standby mode.

Bit 7
SSBY Description
0 The SLEEP instruction causes a transition to the sleep mode. (Initial value)
1 The SLEEP instruction causes a transition to the software standby mode.

The watchdog timer must be stopped before the chip can enter the software standby mode. To
stop the watchdog timer, clear the timer enable bit (TME) in the watchdog timer’s timer
control/status register (TCSR) to 0. The SSBY bit cannot be set to 1 while the TME bit is set to 1.

When the chip is recovered from the software standby mode by a nonmaskable interrupt (NMI),
the SSBY bit is automatically cleared to 0. It is also cleared to 0 by a reset or transition to the
hardware standby mode.

Bits 6 to 0—Reserved: These bits cannot be modified and are always read as 1.

Bit 7 6 5 4 3 2 1 0

SSBY — — — — — — —

Initial value 0 1 1 1 1 1 1 1

Read/Write R/W — — — — — — —
309

18.3.3 Exit from Software Standby Mode

The chip can be brought out of the software standby mode by an input at one of three pins: the
NMI pin, RES pin, or STBY pin.

1. Recovery by NMI Pin: When an NMI request signal is received, the clock oscillator begins
operating but clock pulses are supplied only to the watchdog timer (WDT). The watchdog
timer begins counting from H'00 at the rate determined by the clock select bits (CKS2 to
CKS0) in its timer status/control register (TCSR). This rate should be set slow enough to allow
the clock oscillator to stabilize before the count reaches H'FF. When the count overflows from
H'FF to H'00, clock pulses are supplied to the whole chip, the software standby mode ends, and
execution of the NMI interrupt-handling sequence begins.

The clock select bits (CKS2 to CKS0) should be set as follows.

(1) Crystal oscillator: Set CKS2 to CKS0 to a value that makes the watchdog timer interval
equal to or greater than 10ms, which is the clock stabilization time.

(2) External clock input: CKS2 to CKS0 can be set to any value. The minimum value
(CKS2 = CKS1 = CKS0 = 0) is recommended.

2. Recovery by RES Pin: When the RES pin goes Low, the clock oscillator starts. Next, when
the RES pin goes High, the CPU begins executing the reset sequence.

When the chip recovers from the software standby mode by a reset, clock pulses are supplied to
the entire chip at once. Be sure to hold the RES pin Low long enough for the clock to stabilize.

3. Recovery by STBY Pin: When STBY the pin goes Low, the chip exits from the software
standby mode to the hardware standby mode.

18.3.4 Sample Application of Software Standby Mode

In this example the chip enters the software standby mode on the falling edge of the NMI input
and recovers from the software standby mode on the rising edge of NMI. Figure 18-1 shows a
timing chart of the transitions.

The nonmaskable interrupt edge bit (NMIEG) in the port 1 control register (P1CR) is originally
cleared to 0, selecting the falling edge as the NMI trigger. After accepting an NMI interrupt in
this condition, software changes the NMIEG bit to 1, sets the SSBY bit to 1, and executes the
SLEEP instruction to enter the software standby mode. The chip recovers from the software
standby mode on the next rising edge at the NMI pin.
310

18.3.5 Application Notes

(1) The I/O ports retain their current states in the software standby mode. If a port is in the High
output state, its output current is not reduced in the software standby mode.

(2) If the software standby mode is entered under either condition ➀ or condition ➁ below in a
ZTAT version of the H8/532, current dissipation is greater than in normal standby mode (ICC =
100 to 300µA). This problem does not occur in H8/532 versions with masked ROM.

➀ In single-chip mode (mode 3): if software standby mode is entered after even one
instruction not stored in on-chip ROM has been fetched (e.g. from on-chip RAM).

➁ In expanded mode with on-chip ROM enabled (mode 2): if software standby mode is
entered after even one instruction not stored in on-chip ROM has been fetched (e.g. from
external memory or on-chip RAM).

This problem does not occur in the expanded mode when on-chip ROM is disabled (mode 1).

In applications in which the additional standby current must be avoided, take one of the
following actions:

NMI

NMEG

SSBY

ø

NMI interrupt handling
NMIEG = 1
SSBY = 1
SLEEP instruction

Software standby mode
(Power-down state)

Clock start-up
time

Clock setting time

WDT overflow

NMI interrupt handling

Oscillator

WDT interval (t)OSC2

Figure 18-1 NMI Timing of Software Standby Mode (Application Example)
311

• Store program code only in on-chip ROM.

• Use the hardware standby mode. There is never any additional current in hardware standby
mode.

18.4 Hardware Standby Mode

18.4.1 Transition to Hardware Standby Mode

Regardless of its current state, the chip enters the hardware standby mode whenever the STBY pin
goes Low.

The hardware standby mode reduces power consumption drastically by halting the CPU, stopping
all the functions of the on-chip supporting modules, and placing I/O ports in the high-impedance
state.

The registers of the on-chip supporting modules are reset to their initial values. Only the on-chip
RAM is held unchanged, provided the minimum necessary voltage supply is maintained (at least
2V).*

Notes: 1 The RAME bit in the RAM control register should be cleared to 0 before the STBY
pin goes Low, to disable the on-chip RAM during the hardware standby mode.

2 Do not change the inputs at the mode pins (MD2, MD1, MD0) during hardware
standby mode. Be particularly careful not to let all three mode inputs go low, since
that would place the chip in PROM mode, causing increased current dissipation.

18.4.2 Recovery from Hardware Standby Mode

Recovery from the hardware standby mode requires inputs at both the STBY and RES pins.

When the STBY pin goes High, the clock oscillator begins running. The RES pin should be Low
at this time and should be held Low long enough for the clock to stabilize. When the RES pin
changes from Low to High, the reset sequence is executed and the chip returns to the program
execution state.
312

18.4.3 Timing Sequence of Hardware Standby Mode

Figure 18-2 shows the usual sequence for entering and leaving the hardware standby mode.

First the RES pin goes Low, placing the chip in the reset state. Then the STBY pin goes Low,
placing the chip in the hardware standby mode and stopping the clock. In the recovery sequence
first the STBY pin goes High; then after the clock stabilizes, the RES pin is returned to the High
level.

Oscillator

RES

STBY

Clock setting time

Restart

Figure 18-2 Hardware Standby Sequence
313

