Section 9 I/O Ports

9.1 Overview

The H8/532 has nine ports. Ports 1, 3, 4, 5, 7, and 9 are eight-bit input/output ports. Port 2 is a five-bit input/output port. Port 6 is a four-bit input/output port. Port 8 is an eight-bit input-only port. Table 9-1 summarizes the functions of each port.

Input and output are memory-mapped. The CPU views each port as a data register (DR) located in the register field at the high end of page 0 of the address space. Each port (except port 8) also has a data direction register (DDR) which determines which pins are used for input and which for output. Port 1 has an additional control register (P1CR) for enabling and disabling IRQ0 and IRQ1 and setting other controls.

To read data from an I/O port, the CPU selects input in the data direction register and reads the data register. This causes the input logic level at the pin to be placed directly on the internal data bus. There is no intervening input latch.

To send data to an output port, the CPU selects output in the data direction register and writes the desired data in the data register, causing the data to be held in a latch. The latch output drives the pin through a buffer amplifier. If the CPU reads the data register of an output port, it obtains the data held in the latch rather than the actual level of the pin.

As table 9-1 indicates, all of the I/O port pins have dual functions. For example, pin 7 of port 1 can be used either as a general-purpose I/O pin (P17), or for output of the TMO signal from the on-chip 8-bit timer. The function is determined by the MCU operating mode, or by a value set in a control register.

Outputs from ports 1 to 6 can drive one TTL load and a 90pF capacitive load. Outputs from ports 7 and 9 can drive one TTL load and a 30pF capacitive load.

Outputs from ports 1 to 7 and 9 can also drive a Darlington transistor pair. Outputs from port 4 can drive a light-emitting diode (with 10mA current sink). Ports 5 and 6 have built-in MOS pull-ups for each input. Port 7 has Schmitt inputs.

Schematic diagrams of the I/O port circuits are shown in appendix C.

Table 9-1 Input/Output Port Summary

Port	Description	Pins	Mode 1	•	ed Mode Mode 3		Single-Chip Mode (Mode 7)
Port 1	8-Bit input/output	P17 / TMO	These in	put/outpu	t pins dou	uble as and	<u> </u>
		P16 / IRQ1		nd as IRQ			
		P15 / IRQ0	•	in (TMO) i		•	
		P14 / WAIT				T, BREQ,	Input/output
		P13 / BREQ	and BAC	K when r	necessary	control-	port
		P12 / BACK	register l	bits are se	et to "1."		
		P11/E	These pi	ins functio	on as inpu	It pins or as	
		P10/ø	-		=	pending on	
			-	direction	-	-	
Port 2	5-Bit input/output	P24 / WR	Bus cont	trol signal	outputs		Input/output
	port	P23 / RD	(WR, RD	, <u>D</u> S, R/V	V, AS)		port
		P22 / DS	•				
		P21 / R/W					
		P20 / AS					
Port 3	8-Bit input/output	P37 - P30 /	Data bus	s (D7 – Do)		Input/output
	port	D7 – D0					port
Port 4	8-Bit input/output	P47 – P40 /	Low add	ress bits	(A7 – A0)		Input/output
	port	A7 – A0					port
	Can drive a LED						
Port 5	8-Bit input/output	P57 – P50 /	High	High	High	High	Input/output
	port	A15 – A8	address	address	address	address	port
	Built-in input		bus	bus if	bus	bus if	
	pull-up (MOS)		(A15 –	DDR is	(A15 –	DDR is	
			A8)	set to "1'	' A8)	set to "1"	
Port 6	4-Bit input/output	P63-P60/	Input/out	tput port	Page	Page	Input/output
	port	A19 – A16			address	address	port
	Built-in input				bus	bus if DDR	
	pull-up (MOS)				(A19 –	is set to "1,"	1
					A16)	input port if	
						DDR is set	
						to "0"	

			Expanded Modes	Single-Chip Mode
Port	Description	Pins	Mode 1 Mode 2 Mode 3 Mode 4	(Mode 7)
Port 7	8-Bit input/output	P77 / FTOA1	Input/output for free-running timers 1,	
	port	P76 / FTOB3 /	2 and 3 (FTI1 to FTI3, FTCI1 to FTCI3,	
	(Schmitt inputs)	FTCI3	FTOB1 to FTOB3, FTOA1), input for	
		P75 / FTOB2 /	8-bit timer input (TMCI, TMRI), and 8-	bit
		FTCI2	input/output port	
		P74 / FTOB1 /	(P77 to P70)	
		FTCI1 /		
		P73 / FTI3		
		TMRI		
		P72 / FTI2		
		P71 / FTI1		
		P70 / TMCI		
Port 8	8-Bit input port	P80 - P87	Analog input pins for A/D converter, and	nd
		AN7 – AN0	8-bit input port	
Port 9	8-Bit input/output	P97 / SCK	Output for free-running timers 2 and 3	
	port	P96 / RXD	(FTOA2, FTOA3), PWM timer output	
		P95 / TXD	(PW1, PW2, PW3), serial communication	on
		P94 / PW3	interface (SCI) input/output (TXD, RXI	D,
		P93 / PW2	SCK), and 8-bit input/output port	
		P92 / PW1		
		P91 / FTOA3		
		P90 / FTOA2		

Table 9-1 Input/Output Port Summary (cont)

9.2 Port 1

Г

9.2.1 Overview

Port 1 is an 8-bit input/output port with the pin configuration shown in figure 9-1. All pins have dual functions, except that in the single-chip mode pins 4, 3, and 2 do not have the WAIT, BREQ, and BACK functions. (because the CPU does not access an external bus.)

Outputs from port 1 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair.

	Pin	Expanded Modes	Single-Chip Mode
	🗨 🕞 P17 / TMO	P17 (input/output) / TMO (output)	P17 (input/output) / TMO (output)
	← P16 / IRQ1	P16 (input/output) / IRQ1 (input)	P16 (input/output) / IRQ1 (input)
	← P15 / IRQ0	P15 (input/output) / IRQ0 (input)	P15 (input/output) / IRQ0 (input)
Port	← P14 / WAIT	P14 (input/output) / WAIT (input)	P14 (input/output)
1	P13 / BREQ	P13 (input/output) / BREQ (input)	P13 (input/output)
	P12/BACK	P12 (input/output) / BACK (output)	P12 (input/output)
	← P11 / E	P11 (input) / E (output)	P11 (input) / E (output)
	P10/ø	P10 (input) / ø (output)	P10 (input) / ø (output)

Figure 9-1 Pin Functions of Port 1

9.2.2 Port 1 Registers

Register Configuration: Table 9-2 lists the registers of port 1.

Table 9-2 Port 1 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 1 data direction register	P1DDR	W	H'03	H'FF80
Port 1 data register	P1DR	R/W*1	Undetermined*2	H'FF82
Port 1 control register	P1CR	R/W	H'87	H'FFFC

*1 Bits 1 and 0 are read-only.

*2 Bits 1 and 0 are undetermined. Other bits are initialized to "0."

1. Port 1 Data Direction Register (P1DDR)—H'FF80

Bit	7	6	5	4	3	2	1	0
	P17DDR	P16DDR	P1₅DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value	0	0	0	0	0	0	1	1
Read/Write	W	W	W	W	W	W	W	W

P1DDR is an 8-bit register that selects the direction of each pin in port 1. A pin functions as an output pin if the corresponding bit in P1DDR is set to "1," and as an input pin if the bit is cleared to "0."

P1DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

A reset initializes P1DDR to H'03, so that pins P11 and P10 carry clock outputs and the other pins are set for input. In the hardware standby mode, P1DDR is cleared to H'00, stopping the clock outputs. P1DDR is not initialized in the software standby mode, so if a P1DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 1 data register (or the ø or E clock).

2. Port 1 Data Register (P1DR)—H'FF82

Bit	7	6	5	4	3	2	1	0
	P17	P16	P15	P14	P13	P12	P11	P10
Initial value	0	0	0	0	0	0	_	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	R

P1DR is an 8-bit register containing the data for pins P17 to P10. When the CPU reads P1DR, for output pins it reads the value in the P1DR latch, but for input pins, it obtains the pin status directly.

Note that when pins P11 and P10 are used for output, they output the clock signals (\emptyset and E), not the contents of P1DR. If the CPU reads P11 and P10 (when P11DDR = P10DDR = 1), it obtains the clock values at the current instant.

3. Port 1 Control Register (P1CR)—H'FFFC

Bit	7	6	5	4	3	2	1	0
	—	IRQ1E	IRQ 0E	NMIEG	BRLE	—	_	_
Initial value	1	0	0	0	0	1	1	1
Read/Write	_	R/W	R/W	R/W	R/W	_	_	_

P1CR selects the functions of four of the port 1 pins. It also selects the input edge of the NMI pin.

At a reset and in the hardware standby mode, P1CR is initialized to H'87. It is not initialized in the software standby mode.

Bit 7—Reserved: This bit cannot be modified and is always read as "1."

Bit 6—Interrupt Request 1 Enable (IRQ1E): This bit selects the function of pin P16.

Bit 6		
IRQ1E	Description	
0	P16 functions as an input/output pin.	(Initial value)
1	P16 functions as the IRQ1 input pin, regardless of the value se	t in P16DDR. (However,
	the CPU can still read the pin status by reading P1DR.)	

Bit 5—Interrupt Request 0 Enable (IRQ0E): This bit selects the function of pin P15.

Bit 5		
IRQ₀E	Description	
0	P15 functions as an input/output pin.	(Initial value)
1	P15 functions as the IRQ0 input pin, regardless of the value set	t in P15DDR. (However,
	the CPU can still read the pin status by reading P1DR.)	

Bit 4—Nonmaskable Interrupt Edge (NMIEG): This bit selects the input edge of the NMI pin. It is not related to port 0.

Bit 4		
NMIEG	Description	
0	A nonmaskable interrupt is generated on the falling edge	(Initial value)
	of the input at the NMI pin.	
1	A nonmaskable interrupt is generated on the rising edge	
	of the input at the NMI pin.	

Bit 3—Bus Release Enable (BRLE): This bit selects the functions of pins P12 and P13. It is valid only in the expanded modes (modes 1, 2, 3, and 4). In the single-chip mode, pins P12 and P13 function as input/output pins regardless of the value of the BRLE bit.

Bit 3		
BRLE	Description	
0	P13 and P12 function as input/output pins.	(Initial value)
1	P13 functions as the input pin. P12 functions as the output pin.	

Bits 2 to 0—Reserved: These bits cannot be modified and are always read as "1."

9.2.3 Pin Functions in Each Mode

Port 1 operates differently in the expanded modes (modes 1, 2, 3, and 4) and the single-chip mode (mode 7). Table 9-3 explains how the pin functions are selected in the expanded mode. Table 9-4 explains how the pin functions are selected in the single-chip mode.

Table 9-3 Port 1 Pin Functions in Expanded Modes

Pin Functions and How they are Selected

P17 / TMO The function depends on output select bits 3 to 0 (OS3 to OS0) of the 8-bit timer control/status register (TCSR) and on the P17DDR bit as follows:

OS3 to OS0	All four bit	s are "0"	At least one bit is "1"		
P17DDR	0	1	0	1	
Pin function	P17 input	P17 output	TMO output		

P16 / IRQ1 The function depends on the IRQ1E bit and the P16DDR bit as follows:

IRQ1E	0		1	
P16DDR	0 1		0	1
Pin function	P16 input	P16 output	IRQ1	input

P15 / IRQ0 The function depends on the IRQ0E bit and the P15DDR bit as follows:

IRQ0E	0		1	
P15DDR	0	1	0	1
Pin function	P15 input	P15 output	IRQ 0	input

Table 9-3 Port 1 Pin Functions in Expanded Modes (cont)

Pin Functions and How they are Selected P14 / WAIT The function depends on the wait mode select 1 bit (WMS1) of the wait-state control register (WCR) and the P14DDR bit as follows:

WMS1	0		1	
P14DDR	0 1		0	1
Pin function	P14 input	P14 output	WAIT	input

P13 / BREQ The function depends on the BRLE bit and the P13DDR bit as follows:

BRLE	0		1	
P13DDR	0	1	0	1
Pin function	P13 input	P13 output	BREC	t input

P12 / BACK The function depends on the BRLE bit and the P12DDR bit as follows:

BRLE	0		1	
P12DDR	0 1		0	1
Pin function	P12 input	P12 output	BACK	(input

P11/E

P11DDR	0	1
Pin function	Input	E clock output

P10/ø

P10DDR	0	1
Pin function	Input	ø clock output

Table 9-4 Port 1 Pin Functions in Single-Chip Modes

Pin Selection of Pin Functions

P17 / TMO The function depends on output select bits 3 to 0 (OS3 to OS0) of the 8-bit timer control/status register (TCSR) and on the P17DDR bit as follows:

OS3 to OS0	All four bits are "0"		At least or	ne bit is "1"
P17DDR	0	1	0	1
Pin function	P17 input	P17 output	TMO	output

P16 / IRQ1 The function depends on the IRQ1E bit and the P16DDR bit as follows:

IRQ1E	0		1	
P16DDR	0 1		0	1
Pin function	P16 input	P16 output	IRQ 1	input

P15 / IRQ0 The function depends on the IRQ0E bit and the P15DDR bit as follows:

IRQ0E	0		1	
P15DDR	0	1	0	1
Pin function	P15 input	P15 output	IRQ 0	input

P14

P14DDR	0	1
Pin function	Input	Output

P13

P13DDR	0	1
Pin function	Input	Output

Table 9-4 Port 1 Pin Functions in Single-Chip Modes (cont)

Pin

Selection of Pin Functions

P12

D4 DDD	•	4
P12DDR	0	1
Pin function	Input	Output

P11/E

P11DDR	0	1
Pin function	Input	E clock output

P10/ø

P10DDR	0	1
Pin function	Input	ø clock output

9.3 Port 2

9.3.1 Overview

Port 2 is a five-bit input/output port with the pin configuration shown in figure 9-2. It functions as an input/output port only in the single-chip mode. In the expanded modes it is used for output of bus control signals.

Outputs from port 2 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair.

	Pin	Expanded Modes	Single-Chip Mode
	► P24 / WR	WR (output)	P24 (input/output)
Port	► P23 / RD	RD (output)	P23 (input/output)
2	 ► P22 / DS 	DS (output)	P22 (input/output)
	<->► P21 / R/W	R/W (output)	P21 (input/output)
	→ P20 / AS	AS (output)	P20 (input/output)

Figure 9-2	Pin Functions	of Port 2
------------	---------------	-----------

9.3.2 Port 2 Registers

Register Configuration: Table 9-5 lists the registers of port 2.

Table 9-5Port 2 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 2 data direction register	P2DDR	W	H'E0	H'FF81
Port 2 data register	P2DR	R/W	H'E0	H'FF83

1. Port 2 Data Direction Register (P2DDR)—H'FF81

Bit	7	6	5	4	3	2	1	0
	—	—	_	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial value	1	1	1	0	0	0	0	0
Read/Write	_	_	_	W	W	W	W	W

P2DDR is an 8-bit register that selects the direction of each pin in port 2.

Single-Chip Mode: A pin functions as an output pin if the corresponding bit in P2DDR is set to "1," and as an input pin if the bit is cleared to "0."

Bits 4 to 0 can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

Bits 7 to 5 are reserved. They cannot be modified and are always read as "1."

At a reset and in the hardware standby mode, P2DDR is initialized to H'E0, making all five pins input pins. P2DDR is not initialized in the software standby mode, so if a P2DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 2 data register.

Expanded Modes: All bits of P2DDR are fixed at "1" and cannot be modified.

2. Port 2 Data Register (P2DR)-H'FF83

Bit	7	6	5	4	3	2	1	0
	—	—	_	P24	P23	P22	P21	P20
Initial value	1	1	1	0	0	0	0	0
Read/Write	—	—	_	R/W	R/W	R/W	R/W	R/W

P2DR is an 8-bit register containing the data for pins P24 to P20.

Bits 7 to 5 are reserved. They cannot be modified and are always read as "1."

When the CPU reads P2DR, for output pins it reads the value in the P2DR latch, but for input pins, it obtains the pin status directly.

9.3.3 Pin Functions in Each Mode

Port 2 has different functions in the expanded modes (modes 1, 2, 3, 4) and the single-chip mode (mode 7). Separate descriptions are given below.

Pin Functions in Expanded Modes: In the expanded modes (modes 1, 2, 3, and 4), all pins of P2DDR is automatically set to "1" for output. Port 2 outputs the bus control signals (\overline{AS} , R/\overline{W} , \overline{DS} , \overline{RD} , \overline{WR}).

Figure 9-3 shows the pin functions in the expanded modes.

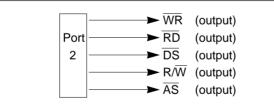


Figure 9-3 Port 2 Pin Functions in Expanded Modes

Pin Functions in Single-Chip Mode: In the single-chip mode (mode 7), each of the port 2 pins can be designated as an input pin or an output pin, as indicated in figure 9-4, by setting the corresponding bit in P2DDR to "1" for output or clearing it to "0" for input.

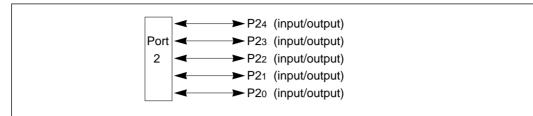


Figure 9-4 Port 2 Pin Functions in Single-Chip Mode

9.4 Port 3

9.4.1 Overview

Port 3 is an 8-bit input/output port with the pin configuration shown in figure 9-5. In the expanded modes it operates as the external data bus (D7 - D0). In the single-chip mode it operates as a general-purpose input/output port.

Outputs from port 3 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair.

	Pin	Expanded Modes	Single-Chip Mode
	P37 / D7	D7 (input/output)	P37 (input/output)
	► P36 / D6	D6 (input/output)	P36 (input/output)
	► P35 / D5	D5 (input/output)	P35 (input/output)
Port <	► P34 / D4	D4 (input/output)	P34 (input/output)
3 🗖	► P33 / D3	D3 (input/output)	P33 (input/output)
	► P32 / D2	D2 (input/output)	P32 (input/output)
-	P31 / D1	D1 (input/output)	P31 (input/output)
-	► P30 / D0	Do (input/output)	P30 (input/output)

Figure 9-5 Pin Functions of Port 3

9.4.2 Port 3 Registers

Register Configuration: Table 9-6 lists the registers of port 3.

Table 9	9-6	Port 3	3 Reg	gisters
---------	-----	--------	-------	---------

Name	Abbreviation	Read/Write	Initial Value	Address
Port 3 data direction register	P3DDR	W	H'00	H'FF84
Port 3 data register	P3DR	R/W	H'00	H'FF86

1. Port 3 Data Direction Register (P3DDR)—H'FF84

Bit	7	6	5	4	3	2	1	0
	P37DDR	P36DDR	P3₅DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P3DDR is an 8-bit register that selects the direction of each pin in port 3.

Single-Chip Mode: A pin functions as an output pin if the corresponding bit in P3DDR is set to "1," and as an input pin if the bit is cleared to "0."

P3DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

At a reset and in the hardware standby mode, P3DDR is initialized to H'00, making all eight pins input pins. P3DDR is not initialized in the software standby mode, so if a P3DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 3 data register.

Expanded Modes: P3DDR is not used.

2. Port 3 Data Register (P3DR)-H'FF86

Bit	7	6	5	4	3	2	1	0
	P37	P36	P35	P34	P33	P32	P31	P30
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P3DR is an 8-bit register containing the data for pins P37 to P30.

At a reset and in the hardware standby mode, P3DR is initialized to H'00.

When the CPU reads P3DR, for output pins it reads the value in the P3DR latch, but for input pins, it obtains the pin status directly.

9.4.3 Pin Functions in Each Mode

Port 3 has different functions in the expanded modes (modes 1, 2, 3, 4) and the single-chip mode (mode 7). Separate descriptions are given below.

Pin Functions in Expanded Modes: In the expanded modes (modes 1, 2, 3, and 4), port 3 is automatically used as the data bus and P3DDR is ignored. Figure 9-6 shows the pin functions for the expanded modes.

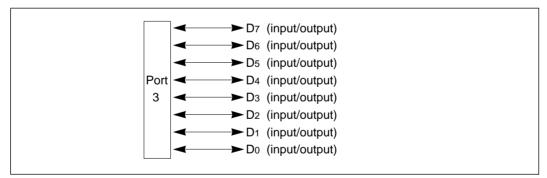
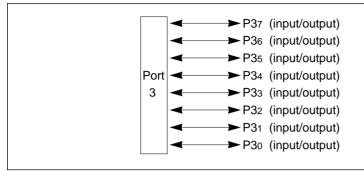
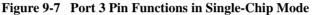




Figure 9-6 Port 3 Pin Functions in Expanded Modes

Pin Functions in Single-Chip Mode: In the single-chip mode (mode 7), each of the port 3 pins can be designated as an input pin or an output pin, as indicated in figure 9-7, by setting the corresponding bit in P3DDR to "1" for output or clearing it to "0" for input.

9.5 Port 4

9.5.1 Overview

Port 4 is an 8-bit input/output port with the pin configuration shown in figure 9-8. In the expanded modes it provides the low bits (A7 - A0) of the address bus. In the single-chip mode it operates as a general-purpose input/output port.

Outputs from port 4 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair or LED (with 8mA current sink).

	Pin	Expanded Modes	Single-Chip Mode
-	► P47 / A7	A7 (output)	P47 (input/output)
-	► P46 / A6	A6 (output)	P46 (input/output)
-	► P45 / A5	A5 (output)	P45 (input/output)
Port 🗲	► P44 / A4	A4 (output)	P44 (input/output)
4 🗲	► P43 / A3	A3 (output)	P43 (input/output)
-	► P42 / A2	A2 (output)	P42 (input/output)
-	► P41 / A1	A1 (output)	P41 (input/output)
-	► P40 / A0	Ao (output)	P40 (input/output)

9.5.2 Port 4 Registers

Register Configuration: Table 9-7 lists the registers of port 4.

Table 9-7Port 4 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 4 data direction register	P4DDR	W	H'00	H'FF85
Port 4 data register	P4DR	R/W	H'00	H'FF87

1. Port 4 Data Direction Register (P4DDR)—H'FF85

Bit	7	6	5	4	3	2	1	0
	P47DDR	P46DDR	P45DDR	P44DDR	P43DDR	P42DDR	P41DDR	P40DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P4DDR is an 8-bit register that selects the direction of each pin in port 4.

Single-Chip Mode: A pin functions as an output pin if the corresponding bit in P4DDR is set to "1," and as in input pin if the bit is cleared to "0."

P4DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

At a reset and in the hardware standby mode, P4DDR is initialized to H'00, making all eight pins input pins. P4DDR is not initialized in the software standby mode, so if a P4DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 4 data register.

Expanded Modes: All bits of P4DDR are fixed at "1" and cannot be modified.

2. Port 4 Data Register (P4DR)-H'FF87

Bit	7	6	5	4	3	2	1	0
	P47	P46	P45	P44	P43	P42	P41	P40
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P4DR is an 8-bit register containing the data for pins P47 to P40.

At a reset and in the hardware standby mode, P4DR is initialized to H'00.

When the CPU reads P4DR, for output pins it reads the value in the P4DR latch, but for input pins, it obtains the pin status directly.

9.5.3 Pin Functions in Each Mode

Port 4 has different functions in the expanded modes (modes 1, 2, 3, 4) and the single-chip mode (mode 7). Separate descriptions are given below.

Pin Functions in Expanded Modes: In the expanded modes (modes 1, 2, 3, and 4), port 4 is used for output of the low bits (A7 - A0) of the address bus. P4DDR is automatically set for output. Figure 9-9 shows the pin functions for the expanded modes.

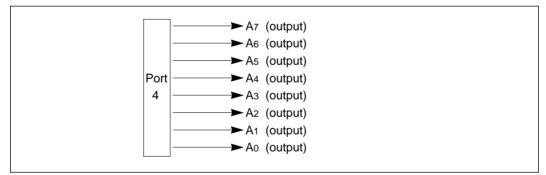


Figure 9-9 Port 4 Pin Functions in Expanded Modes

Pin Functions in Single-Chip Mode: In the single-chip mode (mode 7), each of the port 4 pins can be designated as an input pin or an output pin, as indicated in figure 9-10, by setting the corresponding bit in P4DDR to "1" for output or clearing it to "0" for input.

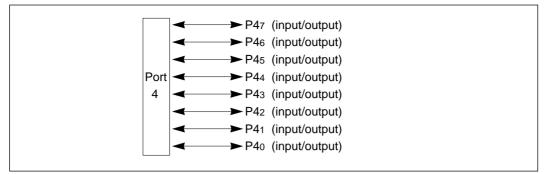


Figure 9-10 Port 4 Pin Functions in Single-Chip Mode

9.6 Port 5

9.6.1 Overview

Port 5 is an 8-bit input/output port with the pin configuration shown in figure 9-11. In the expanded modes that use the on-chip ROM (modes 2 and 4), the pins of port 5 function either as general-purpose input pins or as bits A15 – A8 of the address bus, depending on the port 5 data direction register (P5DDR).

Port 5 has built-in MOS pull-ups that can be turned on or off under program control.

Outputs from port 5 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair.

	Pin	Modes 1 and 3	Modes 2 and 4	Single-Chip Mode
\rightarrow	 P57 / A15 	A15 (output)	P57 (input) / A15 (output)	P57 (input/output)
$ \rightarrow $	 P56 / A14 	A14 (output)	P56 (input) / A14 (output)	P56 (input/output)
\checkmark	 P55 / A13 	A13 (output)	P55 (input) / A13 (output)	P55 (input/output)
Port -	 P54 / A12 	A12 (output)	P54 (input) / A12 (output)	P54 (input/output)
5 🔸	 P53 / A11 	A11 (output)	P53 (input) / A11 (output)	P53 (input/output)
\checkmark	P52 / A10	A10 (output)	P52 (input) / A10 (output)	P52 (input/output)
$ \rightarrow $	 P51 / A9 	A9 (output)	P51 (input) / A9 (output)	P51 (input/output)
$ \rightarrow $	 P50 / A8 	A8 (output)	P50 (input) / A8 (output)	P50 (input/output)

Figure 9-11 Pin Functions of Port 5

9.6.2 Port 5 Registers

Register Configuration: Table 9-8 lists the registers of port 5.

Table 9-8	Port 5	Registers
-----------	--------	-----------

Name	Abbreviation	Read/Write	Initial Value	Address
Port 5 data direction register	P5DDR	W	H'00	H'FF88
Port 5 data register	P5DR	R/W	H'00	H'FF8A

1. Port 5 Data Direction Register (P5DDR)—H'FF88

Bit	7	6	5	4	3	2	1	0
	P57DDR	P56DDR	P5₅DDR	P54DDR	P53DDR	P52DDR	P51DDR	P50DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P5DDR is an 8-bit register that selects the direction of each pin in port 5.

Single-Chip Mode: A pin functions as an output pin if the corresponding bit in P5DDR is set to "1," and as an input pin if the bit is cleared to "0."

P5DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

At a reset and in the hardware standby mode, P5DDR is initialized to H'00, making all eight pins input pins. P5DDR is not initialized in the software standby mode, so if a P5DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 5 data register.

Expanded Modes Using On-Chip ROM (Modes 2 and 4): If a "1" is set in P5DDR, the corresponding pin is used for address output. If a "0" is set in P5DDR, the pin is used for general-purpose input. P5DDR is initialized to H'00 at a reset and in the hardware standby mode.

Expanded Modes Not Using On-Chip ROM (Modes 1 and 3): All bits of P5DDR are fixed at "1" and cannot be modified.

Port 5 Data Register (P5DR)-H'FF8A

Bit	7	6	5	4	3	2	1	0
	P57	P56	P55	P54	P53	P52	P51	P50
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P5DR is an 8-bit register containing the data for pins P57 to P50.

At a reset and in the hardware standby mode, P5DR is initialized to H'00.

When the CPU reads P5DR, for output pins it reads the value in the P5DR latch, but for input pins, it obtains the pin status directly.

9.6.3 Pin Functions in Each Mode

Port 5 operates in one way in modes 1 and 3, in another way in modes 2 and 4, and in a third way in mode 7. Separate descriptions are given below.

Pin Functions in Modes 1 and 3: In modes 1 and 3 (expanded modes in which the on-chip ROM is not used), all bits of P5DDR are automatically set to "1" for output, and the pins of port 5 carry bits A15 – A8 of the address bus. Figure 9-12 shows the pin functions for modes 1 and 3.

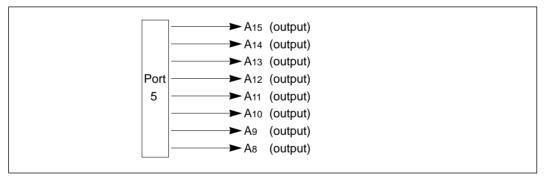


Figure 9-12 Port 5 Pin Functions in Modes 1 and 3

Pin Functions in Modes 2 and 4: In modes 2 and 4, (expanded modes in which the on-chip ROM is used), software can select whether to use port 5 for general-purpose input, or for output of bits $A_{15} - A_8$ of the address bus.

If a bit in P5DDR is set to "1," the corresponding pin is used for address output. If the bit is cleared to "0," the pin is used for input. A reset clears all P5DDR bits to "0," so before the address bus is used, all necessary bits in P5DDR must be set to "1."

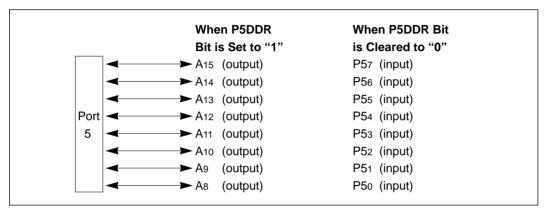


Figure 9-13 shows the pin functions in modes 2 and 4.

Figure 9-13 Port 5 Pin Functions in Modes 2 and 4

Pin Functions in Single-Chip Mode: In the single-chip mode (mode 7), each of the port 5 pins can be designated as an input pin or an output pin, as indicated in figure 9-14, by setting the corresponding bit in P5DDR to "1" for output or clearing it to "0" for input.

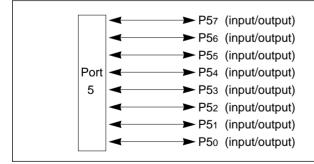


Figure 9-14 Port 5 Pin Functions in Single-Chip Mode

9.6.4 Built-In MOS Pull-Up

The MOS input pull-ups of port 5 are turned on by clearing the corresponding bit in P5DDR to "0" and writing a "1" in P5DR. These pull-ups are turned off at a reset and in the hardware standby mode. Table 9-9 indicates the status of the MOS pull-ups in various modes.

Table 9-9 Status of MOS Pull-Ups for Port 5

Mode	Reset	Hardware Standby Mode	Other Operating States*
1	OFF	OFF	OFF
2			ON/OFF
3			OFF
4			ON/OFF
7			

* Including the software standby mode.

Notation:

OFF:	The MOS pull-up is always off.
ON/OFF:	The MOS pull-up is on when $P5DDR = 0$ and $P5DR = 1$, and off otherwise.

Note on Usage of MOS Pull-Ups

If the bit manipulation instructions listed below are executed on input/output ports 5 and 6 which have selectable MOS pull-ups, the logic levels at input pins will be transferred to the DR latches, causing the MOS pull-ups to be unintentionally switched on or off.

This can occur with the following bit manipulation instructions: BSET, BCLR, BNOT

Specific Example (BSET Instruction): An example will be shown in which the BSET instruction is executed for port 5 under the following conditions:
 P57: Input pin, low, MOS pull-up transistor on
 P56: Input pin, high, MOS pull-up transistor off
 P55 – P50: Output pins, low

The intended purpose of this BSET instruction is to switch the output level at P50 from low to high.

A: Before Execution of BSET Instruction

	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low	High	Low	Low	Low	Low	Low	Low
DDR	0	0	1	1	1	1	1	1
DR	1	0	0	0	0	0	0	0
Pull-up	On	Off						

B: Execution of BSET Instruction

BSET.B #0 @PORT5

;set bit 0 in data register

C: After Execution of BSET Instruction

	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low	High	Low	Low	Low	Low	Low	High
DDR	0	0	1	1	1	1	1	1
DR	0	1	0	0	0	0	0	1
Pull-up	Off	On	Off	Off	Off	Off	Off	Off

Explanation: To execute the BSET instruction, the CPU begins by reading port 5. Since P57 and P56 are input pins, the CPU reads the level of these pins directly, not the value in the data register. It reads P57 as low (0) and P56 as high (1).

Since P55 to P50 are output pins, for these pins the CPU reads the value in the data register (0). The CPU therefore reads the value of port 5 as H'40, although the actual value in P5DR is H'80.

Next the CPU sets bit 0 of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to P5DR to complete the BSET instruction.

As a result, bit P50 is set to 1, switching pin P50 to high output. In addition, bits P57 and P56 are both modified, changing the on/off settings of the MOS pull-up transistors of pins P57 and P56.

Programming Solution: The switching of the pull-ups for P57 and P56 in the preceding example can be avoided by using a byte in RAM as a work area for P5DR, performing bit manipulations on the work area, then writing the result to P5DR.

A: Before Execution of BSET Instruction

MOV.B	#80,	R0	
MOV.B	R0,	@RAM0	
MOV.B	R0,	@PORT5	

;write data (H'80) for data register ;write to work area (RAM0) :write to P5DR

	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low	High	Low	Low	Low	Low	Low	Low
DDR	0	0	1	1	1	1	1	1
DR	1	0	0	0	0	0	0	0
Pull-up	On	Off						
RAM0	1	0	0	0	0	0	0	0

B: Execution of BSET Instruction

BSET.B #0, @RAM0

;set bit 0 in work area (RAM0)

C: After Execution of BSET Instruction

MOV.B @RAM0, R0 MOV.B R0, @PORT5 ;get value in work area (RAM0) ;write value to P5DR

	P5 ₇	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low	High	Low	Low	Low	Low	Low	High
DDR	0	0	1	1	1	1	1	1
DR	1	0	0	0	0	0	0	1
Pull-up	On	Off						
RAM0	1	0	0	0	0	0	0	0

9.7 Port 6

9.7.1 Overview

Port 6 is a 4-bit input/output port with the pin configuration shown in figure 9-15. In mode 4 (the expanded maximum mode that uses the on-chip ROM), the pins of port 6 function either as general-purpose input pins or as the page address bus, depending on the port 6 data direction register (P6DDR).

Port 6 has built-in MOS pull-ups that can be turned on or off under program control.

Outputs from port 6 can drive one TTL load and a 90pF capacitive load. They can also drive a Darlington transistor pair.

	Pin	Mode 3	Mode 4	Mode 1 and 2 and Single-Chip Mode
	P63 / A19	A19 (output)	P63 (input) / A19 (output)	P63 (input/output)
Port -	P62 / A18	A18 (output)	P62 (input) / A18 (output)	P62 (input/output)
6 🔸	P61 / A17	A17 (output)	P61 (input) / A17 (output)	P61 (input/output)
~	P60 / A16	A16 (output)	P60 (input) / A16 (output)	P60 (input/output)

Figure 9-15 Pin Functions of Port 6

9.7.2 Port 6 Registers

Register Configuration: Table 9-10 lists the registers of port 6.

Table 9-10 Port 6 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 6 data direction register	P6DDR	W	H'F0	H'FF89
Port 6 data register	P6DR	R/W	H'F0	H'FF8B

1. Port 6 Data Direction Register (P6DDR)—H'FF89

Bit	7	6	5	4	3	2	1	0
	—	—	—	—	P63DDR	P62DDR	P61DDR	P60DDR
Initial value	1	1	1	1	0	0	0	0
Read/Write	—	—	—		W	W	W	W

P6DDR is an 8-bit register that selects the direction of each pin in port 6.

Single-Chip Mode and Expanded Minimum Modes: A pin functions as an output pin if the corresponding bit in P6DDR is set to "1," and as an input pin if the bit is cleared to "0."

Bits 3 to 0 can be written but not read. An attempt to read these bits does not cause an error, but all bits are read as "1," regardless of their true values.

Bits 7 to 4 are reserved. They cannot be modified and are always read as "1."

At a reset and in the hardware standby mode, P6DDR is initialized to H'F0, making all four pins input pins. P6DDR is not initialized in the software standby mode, so in the single-chip mode, or expanded minimum mode, if a P6DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 6 data register.

Expanded Maximum Mode Using On-Chip ROM (Mode 4): If a "1" is set in P6DDR, the corresponding pin is used for address output. If a "0" is set in P6DDR, the pin is used for input. P6DDR is initialized to H'F0 at a reset and in the hardware standby mode.

Expanded Maximum Mode Not Using On-Chip ROM (Mode 3): All bits of P6DDR are fixed at "1" and cannot be modified.

2. Port 6 Data Register (P6DR)—H'FF8B

Bit	7	6	5	4	3	2	1	0
	—	—		_	P63	P62	P61	P60
Initial value	1	1	1	1	0	0	0	0
Read/Write	—	_	—	—	R/W	R/W	R/W	R/W

P6DR is an 8-bit register containing the data for pins P63 to P60.

Bits 7 to 4 are reserved. They cannot be modified and are always read as "1."

At a reset and in the hardware standby mode, P6DR is initialized to H'F0.

When the CPU reads P6DR, for output pins it reads the value in the P6DR latch, but for input pins, it obtains the pin status directly.

9.7.3 Pin Functions in Each Mode

The usage of port 6 depends on the MCU operating mode. Separate descriptions are given below.

Pin Functions in Mode 3: In mode 3 (the expanded maximum mode in which the on-chip ROM is not used), P6DDR is automatically set for output, and the pins of port 6 carry the page address bits $(A_{19} - A_{16})$ of the address bus. Figure 9-16 shows the pin functions for mode 3.

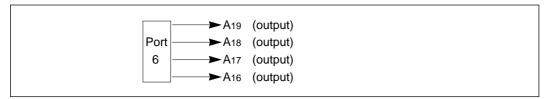


Figure 9-16 Port 6 Pin Functions in Mode 3

Pin Functions in Mode 4: In mode 4, (the expanded maximum mode in which the on-chip ROM is used), software can select whether to use port 6 for general-purpose input, or for output of the page address bits.

If a bit in P6DDR is set to "1," the corresponding pin is used for page address output. If the bit is cleared to "0," the pin is used for input. A reset initializes these pins to the general-purpose input function, so when the address bus is used, all necessary bits in P6DDR must first be set to "1."

Figure 9-17 shows the pin functions in mode 4.

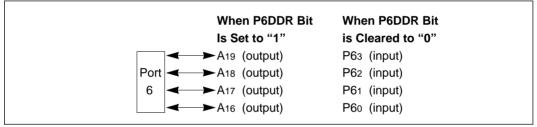


Figure 9-17 Port 6 Pin Functions in Mode 4

Pin Functions in Single-Chip Mode and Expanded Minimum Modes: In the single-chip mode (mode 7) and expanded minimum modes (modes 1 and 2), each of the port 6 pins can be designated as an input pin or an output pin, as indicated in figure 9-18, by setting the corresponding bit in P6DDR to "1" for output or clearing it to "0" for input.

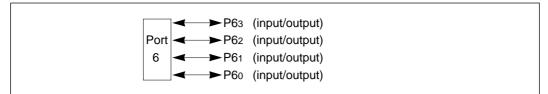


Figure 9-18 Port 6 Pin Functions in Modes 7, 2, and 1

9.7.4 Built-in MOS Pull-Up

Port 6 has programmable MOS input pull-ups which are turned on by clearing the corresponding bit in P6DDR to "0" and writing a "1" in P6DR. These pull-ups are turned off at a reset and in the hardware standby mode. Table 9-11 indicates the status of the MOS pull-ups in various modes.

Table 9-11 Status of MOS Pull-Ups for Port 5

Mode	Reset	Hardware Standby Mode	Other Operating States*
1	OFF	OFF	ON/OFF
2			ON/OFF
3			OFF
4			
7			ON/OFF

* Including the software standby mode.

Notation:

OFF: The MOS pull-up is always off. ON/OFF: The MOS pull-up is on when P6DDR = 0 and P6DR = 1, and off otherwise.

Note: When using the built-in pull-ups, see the "Note on Usage of MOS Pull-Ups" in section 9.6.4.

9.8 Port 7

9.8.1 Overview

Port 7 is an 8-bit input/output port with the pin configuration shown in figure 9-19. Its pins also carry input and output signals for the on-chip free-running timers (FRT1, FRT2, and FRT3), and two input signals for the on-chip 8-bit timer.

Port 7 has Schmitt inputs. Outputs from port 7 can drive one TTL load and a 30pF capacitive load. They can also drive a Darlington transistor pair.

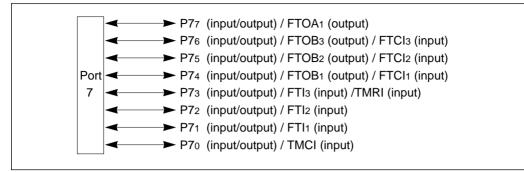


Figure 9-19 Pin Functions of Port 7

9.8.2 Port 7 Registers

Register Configuration: Table 9-12 lists the registers of port 7.

Table 9-12 Port 7 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 7 data direction register	P7DDR	W	H'00	H'FF8C
Port 7 data register	P7DR	R/W	H'00	H'FF8E

1. Port 7 Data Direction Register (P7DDR)—H'FF8C

Bit	7	6	5	4	3	2	1	0
	P77DDR	P76DDR	P7₅DDR	P74DDR	P73DDR	P72DDR	P71DDR	P7₀DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P7DDR is an 8-bit register that selects the direction of each pin in port 7. A pin functions as an output pin if the corresponding bit in P7DDR is set to "1," and as an input pin if the bit is cleared to "0."

P7DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

At a reset and in the hardware standby mode, P7DDR is initialized to H'00, setting all pins for input. P7DDR is not initialized in the software standby mode, so if a P7DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 7 data register.

A transition to the software standby mode initializes the on-chip supporting modules, so any pins of port 7 that were being used by an on-chip timer when the transition occurs revert to general-purpose input or output, controlled by P7DDR and P7DR.

Bit	7	6	5	4	3	2	1	0
	P77	P76	P75	P74	P73	P72	P71	P70
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

2. Port 7 Data Register (P7DR)—H'FF8E

P7DR is an 8-bit register containing the data for pins P77 to P70. When the CPU reads P7DR, for output pins it reads the value in the P7DR latch, but for input pins, it obtains the pin status directly.

9.8.3 Pin Functions

The pin functions of port 7 are the same in all MCU operating modes. As figure 9-19 indicated, these pins are used for input and output of on-chip timer signals as well as for general-purpose input and output. For some pins, two or more functions can be enabled simultaneously.

P77 can be used either for general-purpose input/output, or as the output pin for the output compare A signal (FTOA) from free-running timer 1.

P76 to P74 can be used either for general-purpose input/output, or as the output pins for the output compare B signals (FTOB) from free-running timers 3 to 1. When used for general-purpose input and output, they can also provide external clock input (FTCI) to the free-running counters. This additional function is selected when the clock select 1 and 0 bits (CKS1 and CKS0) in the free-running timer control registers are both set to "1."

P73 to P71 function simultaneously as general-purpose input/output pins and as input pins for the input capture signals (FTI) of free-running timers 3 to 1.

P73 and P70 can be used for timer reset input (TMRI) and timer clock input (TMCI) for the 8-bit timer, as well as for general-purpose input and output.

Table 9-13 shows how the functions of the pins of port 7 are selected.

Table 9-13 Port 7 Pin Functions

Pin	Selection of Pin Functions								
P77 /	The function	depends on th	he output enab	ole A bit (OEA) of the FRT1	timer control			
FTOA1	register (TCF	R) and on the	P77DDR bit as	s follows:					
	OEA	0			1				
	P77DDR	0 1		0	1				
	Pin function	P77 input	P77 output	FTOA1	output	-			
		•			•]			
P76/	The function	The function depends on the output compare B bit (OEB) of the FRT3 timer control							
FTOB3 /		•	P76DDR bit as	• •	,				
FTCI3	. eg.etet (.,							
	OEB	0		-	1	1			
	P76DDR			1	-				
	Pin function	P76 input	P76 output	FTOB3 output		-			
		FTCl3		11000					
		11013	input]			
P75 /	The function	depends on th	he output com	pare B bit (OE	B) of the FRT	2 timer control			
FTOB ₂ /		•	P75DDR bit as	• •	,				
FTCl ₂		,							
1 1 012	OEB	0			1	1			
	P75DDR	0	1	0	1	-			
	Pin function	P75 input	P75 output	-	•	-			
	FILLINGTON	•		FTOB2					
		FTCl2	input]			
P74 /	The function	dananda an ti		nora D hit (OF		1 timer central			
		•	•	• •		1 timer control			
FTOB1 /	register (1CF	() and on the	P74DDR bit as	s follows:					
FTCI1						-			
	OEB	0		-	1	_			
	P74DDR	0	1	0	1				
	Pin function	P74 input	P74 output	FTOB1	output				
		FTCI1	input						
	L				J				

Table 9-13 Port 7 Pin Functions (cont)

Pin Selection of Pin Functions P73 / FTI3 / The function depends on the counter clear bits 1 and 0 (CCLR1 and CCLR0) in the timer control register (TCR) of the 8-bit timer, and on the P73DDR bit as follows:

CCLR1, CCLR0: At least one bit is "0." Both bits are set to "1"

P73DDR	0	1			
Pin function	P73 input	P73 output			
	FTI3 input and TMRI input				

P72 / FTI2

P72DDR	0	1			
Pin function	P72 input	P72 output			
	FTI2 input				

P71 / FTI1

P71DDR	0	1			
Pin function	P71 input	P71 output			
	FTI1 input				

P70 / TMCI This pin always has a general-purpose input/output function, and can simultaneously be used for external clock input for the 8-bit timer, depending on clock select bits 2 to 0 (CKS2, CKS1, and CKS0) in the timer control register (TCR). See section 11, "8-bit Timer" for details.

P70DDR	0	1			
Pin function	P70 input	P70 output			
	TMCI input				

9.9 Port 8

9.9.1 Overview

Port 8 is an 8-bit input port that also receives inputs for the on-chip A/D converter. The pin functions are the same in all MCU operating modes, as shown in figure 9-20.

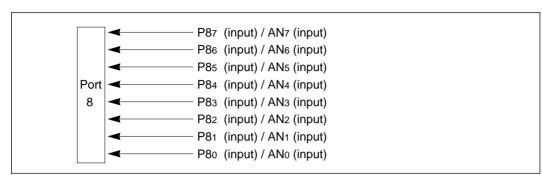


Figure 9-20 Pin Functions of Port 8

9.9.2 Port 8 Registers

Register Configuration: Port 8 has only the data register described in table 9-14. Since it is exclusively an input port, there is no data direction register.

Table 9-14 Port 8 Registers

Name	Abbreviation	Read/Write	Address
Port 8 data register	P8DR	R	H'FF8F

1. Port 8 Data Register (P8DR)—H'FF8F

Bit	7	6	5	4	3	2	1	0
	P87	P86	P85	P84	P83	P82	P81	P80
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

When the CPU reads P8DR it always reads the current status of each pin, except that during A/D conversion the pin currently being converted reads "1" regardless of the actual input voltage at that pin.

9.10 Port 9

9.10.1 Overview

Port 9 is an 8-bit input/output port with the pin configuration shown in figure 9-21. In addition to general-purpose input and output, its pins are used for the output compare A signals from free-running timers 2 and 3, for PWM timer output, and for input and output by the on-chip serial communication interface 9 (SCI). The pin functions are the same in all MCU operating modes.

Outputs from port 9 can drive one TTL load and a 30pF capacitive load. They can also drive a Darlington transistor pair.

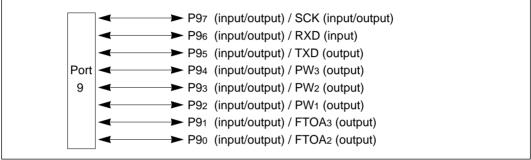


Figure 9-21 Pin Functions of Port 9

9.10.2 Port 9 Registers

Register Configuration: Table 9-15 lists the registers of port 9.

Table 9-15 Port 9 Registers

Name	Abbreviation	Read/Write	Initial Value	Address
Port 9 data direction register	P9DDR	W	H'00	H'FFFE
Port 9 data register	P9DR	R/W	H'00	H'FFFF

1. Port 9 Data Direction Register (P9DDR)—H'FFFE

Bit	7	6	5	4	3	2	1	0
	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	P91DDR	P90DDR
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

P9DDR is an 8-bit register that selects the direction of each pin in port 9. A pin functions as an output pin if the corresponding bit in P9DDR is set to "1," and as an input pin if the bit is cleared to "0."

P9DDR can be written but not read. An attempt to read this register does not cause an error, but all bits are read as "1," regardless of their true values.

At a reset and in the hardware standby mode, P9DDR is initialized to H'00, setting all pins for input. P9DDR is not initialized in the software standby mode, so if a P9DDR bit is set to "1" when the chip enters the software standby mode, the corresponding pin continues to output the value in the port 9 data register.

A transition to the software standby mode initializes the on-chip supporting modules, so any pins of port 9 that were being used by an on-chip module (example: free-running timer output) when the transition occurs revert to general-purpose input or output, controlled by P9DDR and P9DR.

2. Port 9 Data Register (P9DR)—H'FFFF

Bit	7	6	5	4	3	2	1	0
	P97	P96	P95	P94	P93	P92	P91	P90
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

P9DR is an 8-bit register containing the data for pins P97 to P90. When the CPU reads P9DR, for output pins it reads the value in the P9DR latch, but for input pins, it obtains the pin status directly.

9.10.3 Pin Functions

The pin functions of port 9 are the same in all MCU operating modes. As figure 9-21 indicated, these pins are used for output of on-chip timer signals and for input and output of serial data and clock signals as well as for general-purpose input and output. Specifically, they carry output signals for free-running timers 2 and 3, output signals for the pulse-width modulation (PWM) timer, and input and output signals for the serial communication interface.

Table 9-16 shows how the functions of the pins of port 9 are selected.

Table 9-16Port 9 Pin Functions

Pin	Selection of Pin Functions
P97 /	The function depends on the communication mode bit (C/\overline{A}) and the clock enable 1
SCK	and 2 bits (CKE1 and CKE0) of the serial control register (SCR) of the serial
	communication interface as follows:

C/Ā	0			0 1				
CKE1	0			1	(0		1
CKE0	0	1	0	1	0	1	0	1
Pin function	P97	SCI	SCI ext	ternal	SCI int	ernal	SCI ext	ternal
	input	internal	clock ir	nput	clock o	utput	clock ir	nput
	or	clock						
	output*	output						

* Input or output is selected by the P97DDR bit.

P96 / RXD The function depends on the receive enable bit (RE) of the serial control register (SCR) and on the P96DDR bit as follows:

RE	0		1	1
P96DDR 0		1	0	1
Pin function	P96 input	P96 output	RXD input	

P95 / TXD The function depends on the transmit enable bit (TE) of the serial control register (SCR) and on the P95DDR bit as follows:

TE	0		1	
P95DDR 0		1	0	1
Pin function	P95 input	P95 output	TXD output	

Table 9-16 Port 9 Pin Functions (cont)

Pin Selection of Pin Functions P94 / PW3 The function depends on the output enable bit (OE) of the timer control register of PWM timer channel 3 and on the P94DDR bit as follows:

OE	0		1	
P94DDR	0	1	0	1
Pin function	P94 input	P94 output	PW3 o	output

P93 / PW2 The function depends on the output enable bit (OE) of the timer control register of PWM timer channel 2 and on the P93DDR bit as follows:

OE	0		1	l
P93DDR 0		1	0	1
Pin function	P93 input	P93 output	PW2 output	

P92 / PW1 The function depends on the output enable bit (OE) of the timer control register of PWM timer channel 1 and on the P92DDR bit as follows:

OE	0		1	I
P92DDR	0	1	0	1
Pin function	P92 input	P92 output	PW1 o	output

P91 / The function depends on the output compare A bit (OEA) of the FRT3 timer controlFTOA3 FTOA3 register (TCR) and on the P91DDR bit as follows:

OEA	0		1	l
P91DDR 0		1	0	1
Pin function	P91 input	P91 output	FTOA3 output	

P90 / The function depends on the output compare A bit (OEA) of the FRT3 timer controlFTOA2 FTOA2 register (TCR) and on the P90DDR bit as follows:

OEA	0		1	l
P90DDR	0	1	0	1
Pin function	P90 input	P90 output	FTOA2 output	