
   
Section 3   CPU

3.1  Overview

The H8/532 chip has the H8/500 Family CPU:  a high-speed central processing unit designed for
realtime control of a wide range of medium-scale office and industrial equipment.  Its Hitachi-
original architecture features eight 16-bit general registers, internal 16-bit data paths, and an
optimized instruction set.

Section 3 summarizes the CPU architecture and instruction set.

3.1.1  Features

The main features of the H8/500 CPU are listed below.

• General-register machine
— Eight 16-bit general registers
— Seven control registers (two 16-bit registers, five 8-bit registers)

• High speed:  maximum 10MHz
At 10MHz a register-register add operation takes only 200ns.

• Address space managed in 64k-byte pages, expandable to 1M byte*
Page registers make four pages available simultaneously:  a code page, stack page, data page, 
and extended page.

• Two CPU operating modes:
— Minimum mode:  Maximum 64k-byte address space
— Maximum mode:  Maximum 1M-byte address space*

• Highly orthogonal instruction set
Addressing modes and data sizes can be specified independently within each instruction.

• 1.5 Addressing modes
Register-register and register-memory operations are supported.

• Optimized for efficient programming in C language
In addition to the general registers and orthogonal instruction set, the CPU has special short 
formats for frequently-used instructions and addressing modes.

*  The CPU architecture supports up to 16M bytes of external memory, but the H8/532 chip has 
only enough address pins to address 1M byte.
31



3.1.2  Address Space

The address space size depends on the operating mode.

The H8/532 MCU has five operating modes, which are selected by the input to the mode pins
(MD2 to MD0) when the chip comes out of a reset.  The CPU, however, has only two operating
modes.  The MCU operating mode determines the CPU operating mode, which in turn determines
the maximum address space size as indicated in figure 3-1.

Minimum mode

CPU operating mode

Maximum mode

Maximum address space: 64 k
bytes Hightest address: H'FFFF

Maximum address space: 1 M byte
Hightest address: H'FFFFF

Figure 3-1   CPU Operating Modes
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3.1.3  Register Configuration

Figure 3-2 shows the register structure of the CPU.  There are two groups of registers:  the general
registers (Rn) and control registers (CR).

R 0

R 1

R 2

R 3

R 4

R 5

R 6

R 7
(FP)
(SP)

P C

S R

C C R

15 0

15 8 7 0

T I2 I1 I0 N Z V C

C P

D P

E P

T P

B R

FP: Frame Pointer
SP: Stack Pointer

PC: Program Counter

SR: Status Register

CCR: Condition Code Register

CP: Code Page register

DP: Data Page register

EP: Extended Page register

TP: sTack Page register

BR: Base Register

General registers (Rn)

Control registers (CR)

15 0

Figure 3-2   Registers in the CPU
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3.2  CPU Register Descriptions

3.2.1  General Registers

All eight of the 16-bit general registers are functionally alike; there is no distinction between data
registers and address registers.  When these registers are accessed as data registers, either byte or
word size can be selected.

R6 and R7, in addition to functioning as general registers, have special assignments.

R7 is the stack pointer, used implicitly in exception handling and subroutine calls.  It can be
designated by the name SP, which is synonymous with R7.  As indicated in figure 3-3, it points to
the top of the stack.  It is also used implicitly by the LDM and STM instructions, which load and
store multiple registers from and to the stack and pre-decrement or post-increment R7 accordingly.

R6 functions as a frame pointer (FP).  The LINK and UNLK use R6 implicitly to reserve or
release a stack frame.

SP

Unused area

Stack area

Figure 3-3   Stack Pointer
Fig. 3-3
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3.2.2  Control Registers

The CPU control registers (CR) include a 16-bit program counter (PC), a 16-bit status register
(SR), four 8-bit page registers, and one 8-bit base register (BR).

Program Counter (PC):  This 16-bit register indicates the address of the next instruction the
CPU will execute.

Status Register (SR):  This 16-bit register contains internal status information.  The lower half of
the status register is referred to as the condition code register (CCR):  it can be accessed as a
separate condition code byte.

Bit 15—Trace (T):  When this bit is set to “1,” the CPU operates in trace mode and generates a
trace exception after every instruction.  See section 4.4, “Trace” for a description of the trace
exception-handling sequence.

When the value of this bit is “0,” instructions are executed in normal continuous sequence.  This
bit is cleared to “0” at a reset.

Bits 14 to 11—Reserved:  These bits cannot be modified and are always read as “0.”

Bits 10 to 8—Interrupt Mask  (I2, I1, I0):  These bits indicate the interrupt request mask level
(0 to 7).  As shown in table 3-1, an interrupt request is not accepted unless it has a higher level
than the value of the mask.  A nonmaskable interrupt (NMI), which has level 8, is accepted at any
mask level.  After an interrupt is accepted, I2, I1, and I0 are changed to the level of the interrupt.
Table 3-2 indicates the values of the I bits after an interrupt is accepted.

A reset sets all three of bits (I2, I1, and I0) to “1,” masking all interrupts except NMI.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T — — — — I2 I1 I0 — — — — N Z V C

CCR
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Table 3-1   Interrupt Mask Levels

Mask Mask Bits
Priority Level I2 I1 I0 Interrupts Accepted
High 7 1 1 1 NMI 

6 1 1 0 Level 7 and NMI
5 1 0 1 Levels 6 to 7 and NMI
4 1 0 0 Levels 5 to 7 and NMI
3 0 1 1 Levels 4 to 7 and NMI
2 0 1 0 Levels 3 to 7 and NMI
1 0 0 1 Levels 2 to 7 and NMI

Low 0 0 0 0 Levels 1 to 7 and NMI

Table 3-2   Interrupt Mask Bits after an Interrupt is Accepted

Level of Interrupt Accepted I2 I1 I0
NMI (8) 1 1 1
7 1 1 1
6 1 1 0
5 1 0 1
4 1 0 0
3 0 1 1
2 0 1 0
1 0 0 1
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Bits 7 to 4—Reserved:  These bits cannot be modified and are always read as “0.”

Bit 3—Negative (N):  This bit indicates the most significant  bit (sign bit) of the result of an
instruction.

Bit 2—Zero (Z):  This bit is set to “1” to indicate a zero result and cleared to “0” to indicate a
nonzero result.

Bit 1—Overflow (V):  This bit is set to “1” when an arithmetic overflow occurs, and cleared to
“0” at other times.

Bit 0—Carry (C):  This bit is set to “1” when a carry or borrow occurs at the most significant bit,
and is cleared to “0” (or left unchanged) at other times.

The specific changes that occur in the condition code bits when each instruction is executed are
listed in appendix A.1 “Instruction Tables.”  See the H8/500 Series Programming Manual for
further details.

Page Registers:  The code page register (CP), data page register (DP), extended page register
(EP), and stack page register (TP) are 8-bit registers that are used only in the maximum mode.  No
use of their contents is made in the minimum mode.

In the maximum mode, the page registers combine with the program counter and general registers
to generate 24-bit effective addresses as shown in figure 3-4, thereby expanding the program area,
data area, and stack area.
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Code Page Register (CP):  The code page register and the program counter combine to generate
a 24-bit program code address.  In the maximum mode, the code page register is initialized at a
reset to a value loaded from the vector table, and both the code page register and program counter

CP

DP

EP

TP

PC

R0

R4

R5

R6

R7

R1

R2

R3

@ aa : 16

Page register

8 Bits 16 Bits

24 Bits (effective address)

PC or general register

Figure 3-4   Combinations of Page Registers with Other Registers
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are saved and restored in exception handling.

Data Page Register (DP):  The data page register combines with general registers R0 to R3 to
generate a 24-bit effective address.  The data page register contains the upper 8 bits of the address.
It is used to calculate effective addresses in the register indirect addressing mode using R0 to R3,
and in the 16-bit absolute addressing mode (@aa:16).  

The data page register is rewritten by the LDC instruction.

Extended Page Register (EP):  The extended page register combines with general register R4 or
R5 to generate a 24-bit operand address.  The extended page register contains the upper 8 bits of
the address.  It is used to calculate effective addresses in the register indirect addressing mode
using R4 or R5.

The extended page can be used as an additional data page.

Stack Page Register (TP):  The stack page register combines with R6 (FP) or R7 (SP) to
generate a 24-bit stack address.  The stack page register contains the upper 8 bits of the address.  It
is used to calculate effective addresses in the register indirect addressing mode using R6 or R7, in
exception handling, and subroutine calls.

Base Register (BR):  This 8-bit register stores the base address used in the short absolute
addressing mode (@aa:8).  In this addressing mode a 16-bit effective address in page 0 is
generated by using the contents of the base register as the upper 8 bits and an address given in the
instruction code as the lower 8 bits.  See figure 3-5.

In the short absolute addressing mode the address is always located in page 0.

BR @ aa : 8

8 Bits 8 Bits

16 Bits (effective address)

Figure 3-5   Short Absolute Addressing Mode and Base Register
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3.2.3  Initial Register Values

When the CPU is reset, its internal registers are initialized as shown in table 3-3.  Note that the
stack pointer (R7) and base register (BR) are not initialized to fixed values.  Also, of the page
registers used in maximum mode, only the code page register (CP) is initialized; the other three
page registers come out of the reset state with undetermined values.

Accordingly, in the minimum mode the first instruction executed after a reset should initialize the
stack pointer.  The base register must also be initialized before the short absolute addressing mode
(@aa:8) is used.

In the maximum mode, the first instruction executed after a reset should initialize the stack page
register (TP) and the next instruction should initialize the stack pointer.  Later instructions should
initialize the base register and the other page registers as necessary.
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Table 3-3   Initial Values of Registers

3.3  Data Formats

The H8/500 can process 1-bit data, 4-bit BCD data, 8-bit (byte) data, 16-bit (word) data, and 32-
bit (longword) data.
•  Bit manipulation instructions operate on 1-bit data.
•  Decimal arithmetic instructions operate on 4-bit BCD data.
•  Almost all instructions operate on byte and word data.
•  Multiply and divide instructions operate on longword data.

3.3.1  Data Formats in General Registers

Data of all the sizes above can be stored in general registers as shown in table 3-4.

Initial Value
Register Minimum Mode Maximum Mode
General registers

15 0 Undetermined Undetermined
R7 – R0

Control registers
15 0 Loaded from vector table Loaded from vector table

PC
SR

CCR

15 8 7 0 H'070x H'070x
T– – – – I2I1I0  – – – – NZVC (x:  undetermined) (x:  undetermined)

7 0
CP Undetermined Loaded from vector table

7 0
DP Undetermined Undetermined

7 0
EP Undetermined Undetermined

7 0
TP Undetermined Undetermined

7 0
BR Undetermined Undetermined
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Bit data locations are specified by bit number.  Bit 15 is the most significant bit.  Bit 0 is the least
significant bit.  BCD and byte data are stored in the lower 8 bits of a  general register.  Word data
use all 16 bits of a general register.  Longword data use two general registers:  the upper 16 bits
are stored in Rn (n must be an even number); the lower 16 bits are stored in Rn+1.

Operations performed on BCD data or byte data do not affect the upper 8 bits of the register.

Table 3-4   General Register Data Formats

* For longword data n must be even (0, 2, 4, or 6).

3.3.2  Data Formats in Memory

Table 3-5 indicates the data formats in memory.

Instructions that access bit data in memory have byte or word operands.  The instruction specifies
a bit number to indicate a specific bit in the operand.
Access to word data in memory must always begin at an even address.  Access to word data
starting at an odd address causes an address error.  The upper 8 bits of word data are stored in
address n (where n is an even number); the lower 8 bits are stored in address n+1.

Data Type Register No. Data Structure

1-Bit

BCD

Byte

Word

Longword

Rn

Rn

Rn

Rn

Rn*
Rn+1*

15 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 8 7 4 3 0

Don’t-care Upper digit Lower digit

15 8 7 0

Don’t-care MSB LSB

15 0

MSB LSB

31 16

MSB Upper 16 bits

Lower 16 bits LSB

15 0
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Table 3-5   Data Formats in Memory

When the stack is accessed in exception processing (to save or restore the program counter, code
page register, or status register), word access is always performed, regardless of the actual data
size.  Similarly, when the stack is accessed by an instruction using the pre-decrement or post-
increment register indirect addressing mode specifying R7 (@–R7 or @R7+), which is the stack
pointer, word access is performed regardless of the operand size specified in the instruction.  An
address error will therefore occur if the stack pointer indicates an odd address.  Programs should
be coded so that the stack pointer always indicates an even address.

Table 3-6 shows the data formats on the stack.

Data Type Data Format
1-Bit (in byte
operand data)

1-Bit (in word
operand data)

Byte

Word

7

6 5 4 3 2 1 07

15 14 13 12 11 10 9 8

6 5 4 3 2 1 0

MSB LSB

MSB

LSB

Upper 8 bits

Lower 8 bits

Address n

Even address

Odd address

Address n

Even address

Odd address

7 0
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Table 3-6   Data Formats on the Stack

3.4  Instructions

3.4.1  Basic Instruction Formats

There are two basic CPU instruction formats:  the general format and the special format.

General format:  This format consists of an effective address (EA) field, an effective address
extension field, and an operation code (OP) field.  The effective address is placed before the
operation code because this results in faster execution of the instruction.

•  Effective address field: One byte containing information used to calculate the effective 
address of an operand.

•  Effective address extension: Zero to two bytes containing a displacement value, immediate 
data, or an absolute address.  The size of the effective address 
extension is specified in the effective address field.

•  Operation code:  Defines the operation to be carried out on the operand located at 
the address calculated from the effective address information.  
Some instructions (DADD, DSUB, MOVFPE, MOVTPE) have 
an extended format in which the operand code is preceded by a 
one-byte prefix code.

Data Type Data Format
Byte data
on stack

Word data
on stack

MSB

LSB

Upper 8 bits

Lower 8 bits

Even address

Odd address

Even address

Odd address MSB LSB

Don’t-care

Effective address field Effective address extension Operation code
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•  (Example of prefix code in DADD instruction)

Special Format:  In this format the operation code comes first, followed by the effective address
field and effective address extension.  This format is used in branching instructions, system
control instructions, and other instructions that can be executed faster if the operation is specified
before the operand.

•  Operation code:  One or two bytes defining the operation to be performed by the instruction.

• Effective address field and effective address extension:  Zero to three bytes containing 
information used to calculate an effective address.

3.4.2  Addressing Modes

The CPU supports 7 addressing modes:  (1) register direct; (2) register indirect; (3) register
indirect with displacement; (4)  register indirect with pre-decrement or post-increment; (5)
immediate; (6) absolute; and (7) PC-relative.

Due to the highly orthogonal nature of the instruction set, most instructions having operands can
use any applicable addressing mode from (1) through (6).  The PC-relative mode (7) is used by
branching instructions.

In most instructions, the addressing mode is specified in the effective address field.  The effective-
address extension, if present, contains a displacement, immediate data, or an absolute address.

Table 3-7 indicates how the addressing mode is specified in the effective address field.

Operation code Effective address field Effective address extension

Effective address Prefix code Operation code

10100rrr 00000000 10100rrr
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Table 3-7   Addressing Modes

No. Addressing Mode Mnemonic EA Field EA Extension

1 Register direct Rn 1 0 1 0 Sz r r r None

2 Register indirect @Rn 1 1 0 1 Sz r r r None

3 Register indirect @(d:8,Rn) 1 1 1 0 Sz r r r  Displacement (1 byte)
with displacement

@(d:16,Rn) 1 1 1 1 Sz r r r  Displacement (2 bytes)

4 Register indirect @–Rn 1 0 1 1 Sz r r r
with pre-decrement None
Register indirect @Rn+ 1 1 0 0 Sz r r r
with post-increment

5 Immediate #xx:8 0 0 0 0 0 1 0 0 Immediate data (1 byte)

#xx:16 0 0 0 0 1 1 0 0 Immediate data (2 bytes)

6 Absolute *3 @aa:8 0 0 0 0 Sz 1 0 1 1-Byte absolute address
(offset from BR)

@aa:16 0 0 0 1 Sz 1 0 1  2-Byte absolute address

7 PC-relative disp No EA field.  1- or 2-byte displacement
Addressing mode
is specified in the 
operation code.

Notes: * 1 Sz:  Specifies the operand size.
When Sz = 0:  byte operand
When Sz = 1:  word operand

* 2 rrr:  Register number field, specifying a general register number.
0 0 0 — R0 0 0 1 — R1 0 1 0 — R2 0 1 1 — R3
1 0 0 — R4 1 0 1 — R5 1 1 0 — R6 1 1 1 — R7

* 3 The @aa:8 addressing mode is also referred to as the short absolute addressing mode.

*1       *2
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3.4.3  Effective Address Calculation

Table 3-8 explains how the effective address is calculated in each addressing mode.

Table 3-8   Effective Address Calculation

No. Addressing Mode Effective Address Calculation Effective Address
1 Register direct — Operand is contents of 

Rn Rn
1010Sz      rrr

2 Register indirect — 23 15 0
@Rn DP *1 Rn
1101Sz      rrr

Or TP or EP *2

3 Register indirect 8 Bits
with displacement 15 0 23 15 0
@(d:8,Rn) Rn DP *1 Result

15 0 Or TP or EP *2

1110Sz      rrr Displacement with 
sign extension

@(d:16,Rn) 16 Bits
1111Sz      rrr 15 0 23 15 0

Rn DP *1 Result

15 0 Or TP or EP *2

4 Register indirect 15 0 23 15 0
with pre-decrement Rn DP *1 Result

@–Rn Or TP or EP *2

1011Sz      rrr

Register indirect — 23 15 0
with post-increment DP *1 Rn
@Rn+ Rn is incremented by +1 or +2
1100Sz       rrr after instruction execution.*3*4*5 Or TP or EP *2

Rn is decremented by –1 or –2 
before instruction execution.*3*4*5

1 or 2

Displacement

–

+

+
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Table 3-8   Effective Address Calculation (cont)

No. Addressing Mode Effective Address Calculation Effective Address
5 Absolute address — 23 15 0

@aa:8 H'00 BR
0000Sz101 EA extension data

@aa:16 — 23 15 0
0001Sz101 DP EA extension data

6 Immediate — Operand is 1-byte EA
#xx:8 extension data.
00000100

#xx:16 — Operand is 2-byte EA 
00001100 extension data.

7 PC-relative 8 Bits
disp:8 15 0 23 15 0
No EA code PC CP *1 Result
Specified in OP code

15 0
Displacement with
sign extension

disp:16 16 Bits 23 15 0
No EA code 15 0 CP *1 Result
Specified in OP code PC

15 0
Displacement

Notes: * 1 The page register is ignored in minimum mode.
* 2 The page register used in addressing modes 2, 3, and 4 depends on the general register :

DP for R0, R1, R2, or R3;  EP for R4 or R5;  TP for R6 or R7.
* 3 Decrement by  –1 for a byte operand, and by –2 for a word operand.
* 4 The pre-decrement or post-increment is always ±2 when R7 is specified, even if the 

operand is byte size.
* 5 The drawing below shows what happens when the @-SP and @ SP+ addressing 

modes are used to save and restore the stack pointer.

�⊕

�⊕
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SP

Old SP-2 (upper byte)

Old SP-2 (lower byte)

MOV.W SP, @–SP MOV.W @SP+.SP

SP SP
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3.5  Instruction Set

3.5.1  Overview

The main features of the CPU instruction set are:
•  A general-register architecture.
•  Orthogonality.  Addressing modes and data sizes can be specified independently in each instruction.
•  1.5 addressing modes (supporting register-register and register-memory operations)
•  Affinity for high-level languages, particularly C, with short formats for frequently-used 

instructions and addressing modes.
•  Standard mnemonics, common throughout the H Series.

The CPU instruction set includes 63 types of instructions, listed by function in table 3-9.

Table 3-9   Instruction Classification

* Bcc is a conditional branch instruction in which cc represents a condition code.

Tables 3-10 to 3-16 give a concise summary of the instructions in each functional category.  The
MOV, ADD, and CMP instructions have special short formats, which are listed in table 3-17.  For
detailed descriptions of the instructions, refer to the H8/500 Series Programming Manual.

The notation used in tables 3-10 to 3-17 is defined below.

Function Instructions Types
Data transfer MOV, LDM, STM, XCH, SWAP, MOVTPE, MOVFPE 7
Arithmetic operations ADD, SUB, ADDS, SUBS, ADDX, SUBX, DADD, DSUB, 17

MULXU, DIVXU, CMP, EXTS, EXTU, TST, NEG, CLR,

TAS

Logic operations AND, OR, XOR, NOT 4
Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, 8

ROTXR

Bit manipulation BSET, BCLR, BTST, BNOT 4
Branch Bcc*, JMP, PJMP, BSR, JSR, PJSR, RTS, PRTD, 11

PRTS, RTD, SCB (/F, /NE, /EQ)

System control TRAPA, TRAP/VS, RTE, SLEEP, LDC, STC, ANDC, 12
ORC, XORC, NOP, LINK, UNLK

Total 63
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Operation Notation
Rd General register (destination)
Rs General register (source)
Rn General register
(EAd) Destination operand
(EAs) Source operand
CCR Condition code register
N N (negative) bit of CCR
Z Z (zero) bit of CCR
V V (overflow) bit of CCR
C C (carry) bit of CCR
CR Control register
PC Program counter
CP Code page register
SP Stack pointer
FP Frame pointer
#IMM Immediate data
disp Displacement
+ Addition
– Subtraction
× Multiplication
÷ Division
∧ AND logical
∨ OR logical
⊕ Exclusive OR logical
→ Move
↔ Exchange
¬ Not
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3.5.2  Data Transfer Instructions

Table 3-10 describes the seven data transfer instructions.

Table 3-10   Data Transfer Instructions

Instruction Size* Function
Data MOV (EAs) → (EAd),  #IMM → (EAd)
transfer MOV:G B/W Moves data between two general registers, or between

MOV:E B a general register and memory, or moves immediate data
MOV:I W to a general register or memory.
MOV:F B/W

MOV:L B/W

MOV:S B/W

LDM W Stack → Rn (register list)
Pops data from the stack to one or more registers.

STM W Rn (register list) → stack
Pushes data from one or more registers onto the stack.

XCH W Rs ↔ Rd
Exchanges data between two general registers.

SWAP B Rd (upper byte) ↔ Rd (lower byte)
Exchanges the upper and lower bytes in a general register.

MOVTPE B Rn → (EAd)
Transfers data from a general register to memory in
synchronization with the E clock.

MOVFPE B (EAs) → Rd
Transfers data from memory to a general register in 
synchronization with the E clock.

Note:  B—byte; W—word
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3.5.3  Arithmetic Instructions

Table 3-11 describes the 17 arithmetic instructions.

Table 3-11   Arithmetic Instructions

Instruction Size Function
Arithmetic ADD Rd ± (EAs) → Rd,  (EAd) ± #IMM → (EAd)
operations ADD:G B/W Performs addition or subtraction on data in a general 

ADD:Q B/W register and data in another general register or memory, or 
SUB B/W on immediate data and data in a general register or memory.
ADDS B/W

SUBS B/W

ADDX B/W Rd ± (EAs) ± C → Rd
SUBX B/W Performs addition or subtraction with carry or borrow on 

data in a general register and data in another general 
register or memory, or on immediate data and data in a 
general register or memory.

DADD B (Rd)10 ± (Rs)10 ± C → (Rd)10

DSUB B Performs decimal addition or subtraction on data in two 
general registers.

MULXU B/W Rd × (EAs) → Rd
Performs 8-bit × 8-bit or 16-bit × 16-bit unsigned 
multiplication on data in a general register and data in 
another general register or memory, or on data in a 
general register and immediate data.  

DIVXU B/W Rd ÷ (EAs) → Rd
Performs 16-bit ÷ 8-bit or 32-bit ÷ 16-bit unsigned division 
on data in a general register and data in another general 
register or memory, or on data in a general register and 
immediate data.

CMP Rn – (EAs),  (EAd) – #IMM
CMP:G B/W Compares data in a general register with data in another 
CMP:E B general register or memory, or with immediate data, or 
CMP:I W compares immediate data with data in memory.

Note:  B—byte; W—word
53



Table 3-11  Arithmetic Instructions (cont)

Instruction Size Function
Arithmetic EXTS B (<bit 7> of <Rd>) → (<bits 15 to 8> of <Rd>)
operations Converts byte data in a general register to word data by 

extending the sign bit.
EXTU B 0 → (<bits 15 to 8> of <Rd>)

Converts byte data in a general register to word data by 
padding with zero bits.

TST B/W (EAd) – 0
Compares general register or memory contents with 0.

NEG B/W 0 – (EAd) → (EAd)
Obtains the two’s complement of general register or 
memory contents.

CLR B/W 0 → (EAd)
Clears general register or memory contents to 0.

TAS B (EAd) — 0,  (1)2 → (<bit 7> of <EAd>)
Tests general register or memory contents, then sets the 
most significant bit (bit 7) to “1.”

Note:  B—byte; W—word

3.5.4  Logic Operations

Table 3-12 lists the four instructions that perform logic operations.

Table 3-12   Logic Operation Instructions

Instruction Size Function
Logical AND B/W Rd∧ (EAs) → Rd
operations Performs a logical AND operation on a general register 

and another general register, memory, or immediate data.
OR B/W Rd∨ (EAs) → Rd

Performs a logical OR operation on a general register and 
another general register, memory, or immediate data.

XOR B/W Rd⊕ (EAs) → Rd
Performs a logical exclusive OR operation on a general register 
and another general register, memory, or immediate data.

NOT B/W ¬ (EAd) → (EAd)
Obtains the one’s complement of general register or memory 
contents.

Note:  B—byte; W—word
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3.5.5  Shift Operations

Table 3-13 lists the eight shift instructions.

Table 3-13   Shift Instructions

Instruction Size Function
Shift SHAL B/W (EAd) shift → (EAd)
operations SHAR B/W Performs an arithmetic shift operation on general register 

or memory contents.
SHLL B/W (EAd) shift → (EAd)
SHLR B/W Performs a logical shift operation on general register or 

memory contents.
ROTL B/W (EAd) shift → (EAd)
ROTR B/W Rotates general register or memory contents.
ROTXL B/W (EAd) rotate through carry → (EAd)
ROTXR B/W Rotates general register or memory contents through the 

C (carry) bit.
Note:  B—byte; W—word
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3.5.6  Bit Manipulations

Table 3-14 describes the four bit-manipulation instructions.

Table 3-14   Bit-Manipulation Instructions

Instruction Size Function
Bit BSET B/W ¬ (<bit-No.> of <EAd>) → Z,  
manipu- 1 → (<bit-No.> of <EAd>)
lations Tests a specified bit in a general register or memory, then 

sets the bit to “1.”  The bit is specified by a bit number 
given in immediate data or a general register.

BCLR B/W ¬ (<bit-No.> of <EAd>) → Z,
0 → (<bit-No.> of <EAd>)
Tests a specified bit in a general register or memory, then 
clears the bit to “0.”  The bit is specified by a bit number 
given in immediate data or a general register.

BNOT B/W ¬ (<bit-No.> of <EAd>) → Z,
→ (<bit-No.> of <EAd>)
Tests a specified bit in a general register or memory, then 
inverts the bit.  The bit is specified by a bit number given 
in immediate data or a general register.

BTST B/W ¬ (<bit-No.> of <EAd>) → Z
Tests a specified bit in a general register or memory.  The 
bit is specified by a bit number given in immediate data or 
a general register.

Note:  B—byte; W—word
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3.5.7  Branching Instructions

Table 3-15 describes the 11 branching instructions.

Table 3-15   Branching Instructions

Instruction Size Function
Branch Bcc — Branches if condition cc is true.

Mnemonic Description Condition
BRA (BT) Always (true) True
BRN (BF) Never (false) False
BHI High C ∨ Z = 0
BLS Low or Same C ∨ Z = 1
BCC (BHS) Carry Clear C = 0

(High or Same)
BCS (BLO) Carry Set (Low) C = 1
BNE Not Equal Z = 0
BEQ Equal Z = 1
BVC Overflow Clear V = 0
BVS Overflow Set V = 1
BPL Plus N = 0
BMI Minus N = 1
BGE Greater or Equal N ⊕ V = 0
BLT Less Than N ⊕ V = 1
BGT Greater Than Z ∨ (N ⊕ V) = 0
BLE Less or Equal Z ∨ (N ⊕ V) = 1

JMP — Branches unconditionally to a specified address in the same page.
PJMP — Branches unconditionally to a specified address in a specified page.
BSR — Branches to a subroutine at a specified address in the same page.
JSR — Branches to a subroutine at a specified address in the same page.
PJSR — Branches to a subroutine at a specified address in a specified page.
RTS — Returns from a subroutine in the same page.
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Table 3-15   Branching Instructions (cont)

Instruction Size Function
Branch PRTS — Returns from a subroutine in a different page.

RTD — Returns from a subroutine in the same page and adjusts
the stack pointer.

PRTD — Returns from a subroutine in a different page and adjusts 
the stack pointer.

SCB/F — Controls a loop using a loop counter and/or a specified
SCB/NE — termination condition.
SCB/EQ —
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3.5.8  System Control Instructions

Table 3-16 describes the 12 system control instructions.

Table 3-16   System Control Instructions

Instruction Size Function
System TRAPA — Generates a trap exception with a specified vector number.
control TRAP/VS — Generates a trap exception if the V bit is set to “1” when 

the instruction is executed.
RTE — Returns from an exception-handling routine.
LINK — FP → @–SP;  SP → FP;  SP + #IMM → SP

Creates a stack frame.
UNLK — FP → SP;  @SP+ → FP

Deallocates a stack frame created by the LINK instruction.
SLEEP — Causes a transition to the power-down state.
LDC B/W* (EAs) → CR

Moves immediate data or general register or memory 
contents to a specified control register.

STC B/W* CR → (EAd)
Moves control register data to a specified general register 
or memory location.

ANDC B/W* CR ∧ #IMM → CR
Logically ANDs a control register with immediate data.

ORC B/W* CR ∨ #IMM → CR
Logically ORs a control register with immediate data.

XORC B/W* CR ⊕ #IMM → CR
Logically exclusive-ORs a control register with immediate 
data.

NOP — PC + 1 → PC
No operation.  Only increments the program counter.

* The size depends on the control register.

When using the LDC and STC instructions to stack and unstack the BR, CCR, TP, DP, and EP
control registers in the H8/500 family, note the following point.

H8/500 hardware does not permit byte access to the stack. If the LDC.B or STC.B assembler
mnemonic is coded with the @R7 + (@SP+) or @–R7 (@–SP) addressing mode, the stack-
pointer addressing mode takes precedence and hardware automatically performs word access.
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Specifically, the LDC.B and STC.B instructions are executed as follows.

The following applies only to the stack-pointer addressing modes. In addressing modes that do not
use the stack pointer, byte data access is performed as specified by the assembler mnemonic.

(1) STC.B EP, @–SP

When word data access is applied to EP, both EP and DP are accessed. This instruction
stores EP at address SP (old) –2, and DP at address SP (old) –1.

(2) LDC.B @SP+, EP

When word data access is applied to EP, both EP and DP are accessed. This instruction
loads EP from address SP (old), and DP from address SP (old) +1, updating the DP value as
well as the EP value.

(3) STC.B CCR, @–SP

When word data access is applied to CCR, only CCR is accessed. This instruction stores
identical CCR contents at both address SP (old) –2 and address SP (old) –1.

EP
a

DP
b

Old SP – 2

Before execution

Old SP – 1

Old SP

New SP

After execution

New SP + 1

New SP + 2

a

b

EP
a

DP
b

Old SP

After execution

Old SP + 1

Old SP + 2

New SP – 2

Before execution

New SP – 1

New SP

a

b

EP
a

DP
b

CCR
aOld SP – 2

Before execution

Old SP – 1

Old SP

New SP

After execution

New SP + 1

New SP + 2

a

b
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(4) LDC.B @SP+, CCR

When word data access is applied to CCR, only CCR is accessed. This instruction loads
CCR from address SP (old) +1. Note that the value in address SP (old) is not loaded.

BR, DP, and TP are accessed in the same way as CCR. When DP is specified, both EP and
DP are accessed, but when CCR, BR, DP, or TP is specified, only the specified register is
accessed.

CCR
Old SP

After execution

Old SP + 1

Old SP + 2

New SP – 2

Before execution

New SP – 1

New SP

a

b

CCR
b
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3.5.9  Short-Format Instructions

The ADD, CMP, and MOV instructions have special short formats.  Table 3-17 lists these short
formats together with the equivalent general formats.

The short formats are a byte shorter than the corresponding general formats, and most of them
execute one state faster.

Table 3-17   Short-Format Instructions and Equivalent General Formats

Short-Format Execution Equivalent General- Execution
Instruction Length States *2 Format Instruction Length States *2

ADD:Q #xx,Rd *1 2 2 ADD:G   #xx:8,Rd 3 3
CMP:E #xx:8,Rd 2 2 CMP:G.B #xx:8,Rd 3 3
CMP:I #xx:16,Rd 3 3 CMP:G.W #xx:16,Rd 4 4
MOV:E #xx:8,Rd 2 2 MOV:G.B #xx:8,Rd 3 3
MOV:I #xx:16,Rd 3 3 MOV:G.W #xx:16,Rd 4 4
MOV:L @aa:8,Rd 2 5 MOV:G   @aa:8,Rd 3 5
MOV:S Rs,@aa:8 2 5 MOV:G   Rs,@aa:8 3 5
MOV:F @(d:8,R6),Rd 2 5 MOV:G   @(d:8,R6),Rd 3 5
MOV:F Rs,@(d:8,R6) 2 5 MOV:G   Rs,@(d:8,R6) 3 5
Notes: * 1 The ADD:Q instruction accepts other destination operands in addition to a general 

register, but the immediate data value (#xx) is limited to ±1 or ±2.
* 2 Number of execution states for access to on-chip memory.

3.6  Operating Modes

The CPU operates in one of two modes:  the minimum mode or the maximum mode.
These modes are selected by the mode pins (MD2 to MD0 ).

3.6.1  Minimum Mode

The minimum mode supports a maximum address space of 64k bytes.  The page registers are
ignored.  Instructions that branch across page boundaries (PJMP, PJSR, PRTS, PRTD) are invalid.
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3.6.2  Maximum Mode

In the maximum mode the page registers are valid, expanding the maximum address space to 1M
byte.

The address space is divided into 64k-byte pages.  The pages are separate; it is not possible to
move continuously across a page boundary.

It is possible to move from one page to another with branching instructions (PJMP, PJSR, PRTS,
PRTD).  The TRAPA instruction and branches to interrupt-handling routines can also jump across
page boundaries.  It is not necessary for a program to be contained in a single 64k-byte page.

When data access crosses a page boundary, the program must rewrite the page register before it
can access the data in the next page.

For further information on the operating modes, see section 2, “MCU Operating Modes and
Address Space.”

3.7  Basic Operational Timing

3.7.1  Overview

The CPU operates on a system clock (ø) which is created by dividing an oscillator frequency
(fosc) by two.  One period of the system clock is referred to as a “state.”  The CPU accesses
memory in a cycle consisting of 2 or 3 states.  The CPU uses different methods to access on-chip
memory, the on-chip register field, and external devices.

Access to On-Chip Memory (RAM, ROM):  For maximum speed, access to on-chip memory
(RAM, ROM) is performed in two states, using a 16-bit-wide data bus.

Figure 3-6 shows the on-chip memory access cycle.  Figure 3-7 indicates the pin states.  The bus
control signals output from the H8/532 chip go to the nonactive state during the access.

Access to On-Chip Register Field (Addresses H'FF80 to H'FFFF):  The access cycle consists
of three states.  The data bus is 8 bits wide.

Figure 3-8 shows the on-chip supporting module access cycle.  Figure 3-9 indicates the pin states.
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Access to External Devices:  The access cycle consists of three states.  The data bus is 8 bits
wide.  Figure 3-10 (a) and (b) shows the external access cycle.  Additional wait states (Tw) can be
inserted by the wait-state controller (WSC).

3.7.2  On-Chip Memory Access Cycle

T   state

Memory cycle

1 T   state2

ø

Internal address bus

Internal Read signal

Internal data bus
(Read access)

Internal Write signal

Read data

Address

Write dataInternal data bus
(Write access)

Figure 3-6   On-Chip Memory Access Timing
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3.7.3  Pin States during On-Chip Memory Access

T   state1 T   state2

ø

A    to A 

R/W (write access)

19 0

AS, DS, RD, WR

D   to D 7 0

R/W (read access)

“High”

High-impedance

Figure 3-7   Pin States during Access to On-Chip Memory
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3.7.4  Register Field Access Cycle (Addresses H'FF80 to H'FFFF)

T   state

Memory cycle

1 T   state2 T   state3

Address

Read data

ø

Internal address bus

Internal Read signal

Internal Write signal

Internal data bus
(write access)

Internal data bus
(read access)

Write data

Figure 3-8   Register Field Access Timing
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3.7.5  Pin States during Register Field Access (Addresses H'FF80 to H'FFFF)

T   state1 T   state2 T   state3

“High”

ø

A    to A 

R/W (read access)

19 0

AS, DS, RD, WR

D   to D 7 0

R/W (write access)

High-impedance

Figure 3-9   Pin States during Register Field Access
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3.7.6  External Access Cycle

Read cycle

T  state1 T  state2 T  state3

Address

R/W

D  –D7 0

A    –A19 0

ø

AS

WR

DS

RD

“High”

Read data

Figure 3-10 (a)   External Access Cycle (Read Access)
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3.8  CPU States

3.8.1  Overview

The CPU has five states:  the program execution state, exception-handling state, bus-released
state, reset state, and power-down state.  The power-down state is further divided into the sleep
mode, software standby mode, and hardware standby mode.  Figure 3-11 summarizes these states,
and figure 3-12 shows a map of the state transitions.

Write cycle

T  state1 T  state2 T  state3

Address

Write data

“High”

R/W

D  –D7 0

A    –A19 0

ø

AS

WR

DS

RD

Figure 3-10 (b)   External Access Cycle (Write Access)
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State Program execution state

Exception-handling state

Bus-released state

Reset state

Power-down state

The CPU executes program instructions in sequence.

A transient state in which the CPU executes a hardware
sequence (saving the program counter and status register,
fetching a vector from the vector table, etc.) triggered by a reset,
interrupt, or other exception.

The state in which the CPU has released the external bus in
response to a bus request signal from an external device, and
is waiting for the bus to be returned.

The state in which the CPU and all on-chip supporting
modules have been initialized and are stopped.

A state in which some
or all of the clock
signals are stopped to
conserve power.

Sleep mode

Software standby mode

Hardware standby mode

Figure 3-11   Operating States
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3.8.2  Program Execution State

In this state the CPU executes program instructions in normal sequence.

3.8.3  Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal
program flow due to an interrupt, trap instruction, address error, or other exception.  In this state
the CPU carries out a hardware-controlled sequence that prepares it to execute a user-coded
exception-handling routine.

BREQ = “0”

BREQ = “0”
BREQ = “1”

Bus-released state

            End of
 exception
handling

         Request
  for exception
handling

     SLEEP
instruction
with standby
             flag set

SLEEP
      instruction

Interrupt request

NMI

Program execution state

Exception-handling
state

Sleep mode

Software standby mode

Hardware standby modeReset state * STBY = “1”, RES = “0”

R
E

S
 =

 “
1”

* From any state except the hardware standby mode, a transition to the reset state occurs
whenever RES goes Low.

* A transition to the hardware standby mode from any state occurs when STBY goes Low.

Fig. 3-12

BREQ = “1”

1 * 2

1

2

Figure 3-12   State Transitions
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In the hardware exception-handling sequence the CPU does the following:
1. Saves the program counter and status register (in minimum mode) or program counter, code

page register, and status register (in maximum mode) to the stack.
2. Clears the T bit in the status register to “0.”
3. Fetches the start address of the exception-handling routine from the exception vector table.
4. Branches to that address, returning to the program execution state.

See section 4, “Exception Handling,” for further information on the exception-handling state.

3.8.4  Bus-Released State

When so requested, the CPU can grant control of the external bus to an external device.  While an
external device has the bus right, the CPU is said to be in the bus-released state.  The bus right is
controlled by two pins:

•  BREQ: Input pin for the Bus Request signal from an external device
•  BACK: Output pin for the Bus Request Acknowledge signal from the CPU, indicating that

the CPU has released the bus

The procedure by which the CPU enters and leaves the bus-released state is:
1. The CPU receives a Low BREQ signal from an external device.
2. The CPU places the address bus pins (A19 – A0), data bus pins (D7 – D0) and bus control pins

(RD, WR, R/W, DS, and AS) in the high-impedance state, sets the BACK pin to the Low level
to indicate that it has released the bus, then halts.

3. The external device that requested the bus (with the BREQ signal) becomes the bus master.  It
can use the data bus and address bus.  The external device is responsible for manipulating the
bus control signals (RD, WR, R/W, DS, and AS).

4. When the external device finishes using the bus, it clears the BREQ signal to the High level.
The CPU then reassumes control of the bus and returns to the program execution state.

Bus Release Timing:  The CPU can release the bus right at the following times:
1. The BREQ signal is sampled during every memory access cycle (instruction prefetch or data

read/write).  If BREQ is Low, the CPU releases the bus right at the end of the cycle.  (In
word data access to external memory or an address from H'FF80 to H'FFFF, the CPU does
not release the bus right until it has accessed both the upper and lower data bytes.)

2. During execution of the MULXU and DIVXU instructions, since considerable time may
pass without an instruction prefetch or data read/write, BREQ is also sampled at internal
machine cycles, and the bus right is released if BREQ is Low.

3. The bus right can also be released in the sleep mode.

The CPU does not recognize interrupts while the bus is released.
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Timing Charts:  Timing charts of the operation by which the bus is released are shown in
figure 3-13 for the case of bus release during an on-chip memory read cycle, in figure 3-14 for
bus release during an external memory read cycle, and in figure 3-15 for bus release while the
CPU is performing an internal operation.

RD, WR, R/W
DS, AS

D  –D7 0

A    –A19 0

ø

BREQ

BACK

On-chip memory
Access cycle Bus-right release cycle CPU cycle

T2 T1 T2 TX TX TX TX T1* * *

(1) (2) (3) (4) (5)

Fig. 3-13

(1) The BREQ pin is sampled at the start of the T1 state and the Low level is detected.
(2) At the end of the memory access cycle, the BACK pin goes Low and the CPU releases the bus.
(3) While the bus is released, the BREQ pin is sampled at each Tx state.
(4) A High level is detected at the BREQ pin.
(5) The BACK pin is returned to the High level, ending the bus-right release cycle.

* T1 and T2:  On-chip memory access states.
Tx :  Bus-right released state.

Figure 3-13   Bus-Right Release Cycle (During On-Chip Memory Access Cycle)
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RD, WR
R/W, DS

D  –D7 0

A    –A19 0

ø

BREQ

BACK

(1) (2) (3) (4)

Fig. 3-14

Bus-right release cycle CPU cycleExternal access cycle

T1 T2 TW TXT3 TX TX T1* *

(1) The BREQ pin is sampled at the start of the TW state and the Low level is detected.
(2) At the end of the external access cycle, the BACK pin goes Low and the CPU releases the bus.
(3) The BREQ pin is sampled at the TX state and a High level is detected.
(4) The BACK pin is returned to the High level, ending the bus-right release cycle.

* TW :  Wait state.
TX :  Bus-right released state.

Figure 3-14   Bus-Right Release Cycle (During External Access Cycle)
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RD, WR
R/W, DS

D  –D7 0

A    –A19 0

ø

BREQ

BACK

Bus-right release cycle CPU cycleExternal access cycle

Ti Ti Ti TX TX T1** TXTi

Fig. 3-15

(1) (2) (3) (4)

(1) The BREQ pin is sampled at the start of a TI state and the Low level is detected.
(2) At the end of the internal operation cycle, the BACK pin goes Low and the CPU releases the bus.
(3) The BREQ pin is sampled at the TX state and a High level is detected.
(4) The BACK pin is returned to the High level, ending the bus-right release cycle.

* TI :  Internal CPU operation state.
TX :  Bus-right released state.

Figure 3-15   Bus-Right Release Cycle (During Internal CPU Operation)
75



Notes:  The BREQ signal must be held Low until BACK goes Low.  If BREQ returns to the High
level before BACK goes Low, the bus release operation may be executed incorrectly.

To leave the bus-released state, the High level at the BREQ pin must be sampled two times.  If the
BREQ returns to Low before it is sampled two times, the bus released cycle will not end.

The bus release operation is enabled only when the BRLE bit in the port 1 control register (P1CR)
is set to “1.”  When this bit is cleared to “0” (its initial value), the BREQ and BACK pins are used
for general-purpose input and output, as P13 and P12.

An instruction that sets the BRLE bit is: BSET.B #3, @H'FFFC

Note the following point when using the H8/532’s release function.

If the BREQ signal is asserted and an interrupt is requested simultaneously during execution of
the SLEEP instruction, the BACK signal may fail to be output even though the CPU has released
the bus.  This may cause the system to stop for the interval during which BREQ is asserted, with
no device in control of the bus.  The interrupts that can cause this state include NMI, IRQ, and all
the interrupts from on-chip supporting modules.  When the BREQ signal is deasserted, ending this
state, the CPU takes control of the bus again and resumes normal instruction execution.

The following methods can be used to avoid entering this state.

Method 1: If the BREQ signal is used, do not use the SLEEP instruction.

Method 2: Disable the BREQ signal during execution of the SLEEP instruction.  This can be
done by clearing the bus release enable bit (BRLE) in the port 1 control register (P1CR) to 0
immediately bifore executing the SLEEP instruction. (When the BRLE bit is cleared, low inputs
on the BREQ line are not latched on-chip.)  Place instructions to set the BRLE bit to 1 at the
beginning of interrupt-handling routines.  If the data transfer controller (DTC) is used, place an
instruction to set the BRLE bit immediately after the SLEEP instruction.

If method 2 is used, BREQ inputs will be ignored while the chip is in sleep mode.

(Coding example)
Main Program Interrupt-Handling Routine

BSET.B  #3, @P1CR
BCLR.B  #3, @P1CR
SLEEP
BSET.B  #3, @P1CR RTE
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3.8.5  Reset State

In the reset state, the CPU and all on-chip supporting modules are initialized and placed in the
stopped state.  The CPU enters the reset state whenever the RES pin goes Low, unless the CPU is
currently in the hardware standby mode.  It remains in the reset state until the RES pin goes High.

See section 4.2, “Reset,” for further information on the reset state.

3.8.6  Power-Down State

The power-down state comprises three modes:  the sleep mode, the software standby mode, and
the hardware standby mode.

See section 18, “Power-Down State,” for further information.
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3.9  Programming Notes

3.9.1  Restriction on Address Location

The following restriction applies when instructions are located in on-chip RAM.

• Restriction

Instruction execution cannot proceed continuously from an external address to on-chip RAM in
the ZTAT versions.  This restriction does not apply to versions with masked ROM.

• Solution

To execute instructions located in on-chip RAM, use a branch instruction (examples: Bcc, JMP,
etc.) to branch to the first instruction located in on-chip RAM. Do not place instruction code in
the last three bytes of external memory (H'FB7D to H'FB7F).

H'FB7A

H'FB7B

H'FB7C

H'FB7D

H'FB7E

H'FB7F

H'FB80

H'FB81

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

BRA

disp

NOP

NOP

Not
executable

Do not
place
instruction
code here

Branch

H'FB7A

H'FB7B

H'FB7C

H'FB7D

H'FB7E

H'FB7F

H'FB80

H'FB81

Execution Disabled Execution Enabled
78



 

3.9.2  Note on MULXU Instruction

Note that in the case described below, the H8/532 multiply instruction does not give correct
results.

(1) Problem

The result of a squaring operation such as MULXU.B Rn, Rn is indeterminate. This problem
occurs when the same register is specified for the source and destination of a byte
multiplication operation.

This problem occurs only in ZTAT versions of the H8/532.  It does not occur in versions
with masked ROM.

(2) Solution

The problem can be avoided by the following methods.

➀ Place the source and destination operands in different registers.
Example: MULXU.B  R4, R4 → MOV.W  R4, R5

MULXU.B  R5, R4

➁ Use a word multiplication instruction.
Example: MULXU.B  R4, R4 → MULXU.W  R4, R4

MOV.W  R5, R4

➂ Place one of the operands in memory.
Example: MULXU.B  R4, R4 → MOV.W  R4, @–SP

MULXU.B  @(1,SP), R4
ADDS  #2, SP

This problem occurs only in the H8/532. It does not occur in other chips in the H8/500
Series (such as the H8/520).

(3) Note on usage of C compiler

Programmers using the C compiler should bear the following programming note in mind.

• Conditions under which the compiler generates a MULXU.B Rn, Rn instruction

The C compiler generates a MULXU.B Rn, Rn instruction when the following two conditions
are satisfied in the source program:
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➀ A one-byte variable (char or unsigned char) is declared as a register variable.

➁ The variable declared as in ➀  is squared by compound substitution
Example: register char a;

a *= a;

• Solution

The problem can be avoided as follows:

➀ In the example above, do not declare the variable (a) as a register variable.
Example: register char a; → char a;

a *= a; a *= a;

➁ When squaring one-byte data, do not use compound substitution. Code as follows:
Example: a *= a; → a = a * a;
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